presynaptic release
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 24)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Ryan David Shepard ◽  
Kunwei Wu ◽  
Wei Lu

Sleep is a fundamental physiological process conserved across most species. As such, deficits in sleep can result in a myriad of psychological and physical health issues. However, the mechanisms underlying the induction of sleep are relatively unknown. Interestingly, general anesthetics cause unconsciousness by positively modulating GABA-A receptors (GABAARs). Based on this observation, it is hypothesized that GABAARs play a critical role in modulating circuits involved in sleep to promote unconsciousness. Recently, the lateral habenula (LHb) has been demonstrated to play a role in sleep physiology and sedation. Specifically, propofol has been shown to excite LHb neurons to promote sedation. However, the mechanism by which this occurs is unknown. Here, we utilize whole-cell voltage and current clamp recordings from LHb neurons obtained from 8-10 week old male mice to determine the physiological mechanisms for this phenomenon. We show that bath application of 1.5μM propofol is sufficient to increase LHb neuronal excitability involving synaptic transmission, but not through modulation of intrinsic properties. Additionally, although there is increased LHb neuronal excitability, GABAARs localized postsynaptically on LHb neurons are still responsive to propofol, as indicated by an increase in the decay time. Lastly, we find that propofol increases the synaptic drive onto LHb neurons involving enhanced presynaptic release of both glutamate and GABA. However, the greatest contributor to the potentiated synaptic drive is the increased release of glutamate which shifts the balance of synaptic transmission towards greater excitation. Taken together, this study is the first to identify the physiological basis for why LHb neurons are excited by propofol, rather than inhibited, and as a result promote sedation.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1759
Author(s):  
Isabella Romeo ◽  
Giulia Vallarino ◽  
Federica Turrini ◽  
Alessandra Roggeri ◽  
Guendalina Olivero ◽  
...  

Polyphenol ellagic acid (EA) possesses antioxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and cardio protection activities, making it an interesting multi-targeting profile. EA also controls the central nervous system (CNS), since it was proven to reduce the immobility time of mice in both the forced swimming and the tail-suspension tests, with an efficiency comparable to that of classic antidepressants. Interestingly, the anti-depressant-like effect was almost nulled by the concomitant administration of selective antagonists of the noradrenergic receptors, suggesting the involvement of these cellular targets in the central effects elicited by EA and its derivatives. By in silico and in vitro studies, we discuss how EA engages with human α2A-ARs and α2C-AR catalytic pockets, comparing EA behaviour with that of known agonists and antagonists. Structurally, the hydrophobic residues surrounding the α2A-AR pocket confer specificity on the intermolecular interactions and hence lead to favourable binding of EA in the α2A-AR, with respect to α2C-AR. Moreover, EA seems to better accommodate within α2A-ARs into the TM5 area, close to S200 and S204, which play a crucial role for activation of aminergic GPCRs such as the α2-AR, highlighting its promising role as a partial agonist. Consistently, EA mimics clonidine in inhibiting noradrenaline exocytosis from hippocampal nerve endings in a yohimbine-sensitive fashion that confirms the engagement of naïve α2-ARs in the EA-mediated effect.


2021 ◽  
Vol 14 ◽  
Author(s):  
Jiaqi Keith Luo ◽  
Holly Melland ◽  
Jess Nithianantharajah ◽  
Sarah L. Gordon

Fast, high-fidelity neurotransmission and synaptic efficacy requires tightly regulated coordination of pre- and postsynaptic compartments and alignment of presynaptic release sites with postsynaptic receptor nanodomains. Neuroligin-1 (Nlgn1) is a postsynaptic cell-adhesion protein exclusively localised to excitatory synapses that is crucial for coordinating the transsynaptic alignment of presynaptic release sites with postsynaptic AMPA receptors as well as postsynaptic transmission and plasticity. However, little is understood about whether the postsynaptic machinery can mediate the molecular architecture and activity of the presynaptic nerve terminal, and thus it remains unclear whether there are presynaptic contributions to Nlgn1-dependent control of signalling and plasticity. Here, we employed a presynaptic reporter of neurotransmitter release and synaptic vesicle dynamics, synaptophysin-pHluorin (sypHy), to directly assess the presynaptic impact of loss of Nlgn1. We show that lack of Nlgn1 had no effect on the size of the readily releasable or entire recycling pool of synaptic vesicles, nor did it impact exocytosis. However, we observed significant changes in the retrieval of synaptic vesicles by compensatory endocytosis, specifically during activity. Our data extends growing evidence that synaptic adhesion molecules critical for forming transsynaptic scaffolds are also important for regulating activity-induced endocytosis at the presynapse.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guendalina Olivero ◽  
Francesca Cisani ◽  
Danilo Marimpietri ◽  
Daniela Di Paolo ◽  
Maria Cristina Gagliani ◽  
...  

Whether exosomes can be actively released from presynaptic nerve terminals is a matter of debate. To address the point, mouse cortical synaptosomes were incubated under basal and depolarizing (25 mM KCl-enriched medium) conditions, and extracellular vesicles were isolated from the synaptosomal supernatants to be characterized by dynamic light scattering, transmission electron microscopy, Western blot, and flow cytometry analyses. The structural and biochemical analysis unveiled that supernatants contain vesicles that have the size and the shape of exosomes, which were immunopositive for the exosomal markers TSG101, flotillin-1, CD63, and CD9. The marker content increased upon the exposure of nerve terminals to the high-KCl stimulus, consistent with an active release of the exosomes from the depolarized synaptosomes. High KCl-induced depolarization elicits the Ca2+-dependent exocytosis of glutamate. Interestingly, the depolarization-evoked release of exosomes from cortical synaptosomes also occurred in a Ca2+-dependent fashion, since the TSG101, CD63, and CD9 contents in the exosomal fraction isolated from supernatants of depolarized synaptosomes were significantly reduced when omitting external Ca2+ ions. Differently, (±)-baclofen (10 µM), which significantly reduced the glutamate exocytosis, did not affect the amount of exosomal markers, suggesting that the GABAB-mediated mechanism does not control the exosome release. Our findings suggest that the exposure of synaptosomes to a depolarizing stimulus elicits a presynaptic release of exosomes that occurs in a Ca2+-dependent fashion. The insensitivity to the presynaptic GABAB receptors, however, leaves open the question on whether the release of exosomes could be a druggable target for new therapeutic intervention for the cure of synaptopathies.


2021 ◽  
Author(s):  
Jiaqi Keith Luo ◽  
Holly Melland ◽  
Jess Nithianantharajah ◽  
Sarah L Gordon

Fast, high-fidelity neurotransmission and synaptic efficacy requires tightly regulated coordination of pre- and postsynaptic compartments and alignment of presynaptic release sites with postsynaptic receptor nanodomains. Neuroligin-1 (Nlgn-1) is a postsynaptic cell-adhesion protein exclusively localised to excitatory synapses that is crucial for coordinating the transsynaptic alignment of presynaptic release sites with postsynaptic AMPA receptors as well as postsynaptic transmission and plasticity. However, little is understood about whether the postsynaptic machinery can mediate the molecular architecture and activity of the presynaptic nerve terminal, and thus it remains unclear whether there are presynaptic contributions to Nlgn1-dependent control of signalling and plasticity. Here, we employed a presynaptic reporter of neurotransmitter release and synaptic vesicle dynamics, synaptophysin-pHluorin (sypHy), to directly assess the presynaptic impact of loss of Nlgn1. We show that lack of Nlgn1 had no effect on the size of the readily releasable or entire recycling pool of synaptic vesicles, nor did it impact exocytosis. However, we observed significant changes in the retrieval of synaptic vesicles by compensatory endocytosis, specifically during activity. Our data extends growing evidence that synaptic adhesion molecules critical for forming transsynaptic scaffolds are also important for regulating activity-induced endocytosis at the presynapse.


2021 ◽  
Author(s):  
Anna Simon ◽  
Arnd Roth ◽  
Arlo Sheridan ◽  
Mehmet Fisek ◽  
Vincenzo Marra ◽  
...  

Large-volume ultrastructural mapping approaches yield detailed circuit wiring diagrams but lack an integrated synaptic activity readout which is essential for functional interpretation of the connectome. Here we resolve this limitation by combining functional synaptic labelling in vivo with focused ion-beam scanning electron microscopy (FIBSEM) and machine learning-based segmentation. Our approach generates high-resolution near-isotropic three-dimensional readouts of activated vesicle pools across large populations of individual synapses in a volume of tissue, opening the way for detailed functional connectomics studies. We apply this method to measure presynaptic activity in an ultrastructural context in synapses activated by sensory input in primary visual cortex in awake head-fixed mice, showing that the numbers of recycling and non-recycling vesicles approximate to a lognormal distribution across a large number of synapses. We also demonstrate that neighbouring boutons of the same axon, which share the same spiking activity, can differ greatly in their presynaptic release probability.


2021 ◽  
Author(s):  
Emma E Boxer ◽  
Charlotte Seng ◽  
David Lukacsovich ◽  
JungMin Kim ◽  
Samantha Schwartz ◽  
...  

AbstractVentral subiculum (vSUB) is integral to the regulation of stress and reward, however the intrinsic connectivity and synaptic properties of the inhibitory local circuit are poorly understood. Neurexin-3 (Nrxn3) is highly expressed in hippocampal inhibitory neurons, but its function at inhibitory synapses has remained elusive. Using slice electrophysiology, imaging, and single-cell RNA sequencing, we identify multiple roles for Nrxn3 at GABAergic parvalbumin (PV) interneuron synapses made onto vSUB regular spiking (RS) and burst spiking (BS) principal neurons. Surprisingly, we found that intrinsic connectivity and synaptic function of Nrxn3 in vSUB are sexually dimorphic. We reveal that vSUB PVs make preferential contact with RS neurons in males, but BS neurons in females. Furthermore, we determined that despite comparable Nrxn3 isoform expression in male and female PV neurons, Nrxn3 maintains synapse density at PV-RS synapses in males, but suppresses presynaptic release at the same synapses in females.HighlightsOverall inhibitory strength in ventral subiculum is cell-type specificPV circuits in ventral subiculum are organized sex-specificallyNrxn3 function in PV interneurons depends on postsynaptic cell identityNrxn3 has distinct functions at PV-RS synapses in females compared to malesAbstract FigureGraphical Abstract


2021 ◽  
Vol 13 ◽  
Author(s):  
Joseph Clerke ◽  
Patricia Preston-Ferrer ◽  
Ioannis S. Zouridis ◽  
Audrey Tissot ◽  
Laura Batti ◽  
...  

Projections from the lateral habenula (LHb) control ventral tegmental area (VTA) neuronal populations’ activity and both nuclei shape the pathological behaviors emerging during cocaine withdrawal. However, it is unknown whether cocaine withdrawal modulates LHb neurotransmission onto subsets of VTA neurons that are part of distinct neuronal circuits. Here we show that, in mice, cocaine withdrawal, drives discrete and opposing synaptic adaptations at LHb inputs onto VTA neurons defined by their output synaptic connectivity. LHb axons innervate the medial aspect of VTA, release glutamate and synapse on to dopamine and non-dopamine neuronal populations. VTA neurons receiving LHb inputs project their axons to medial prefrontal cortex (mPFC), nucleus accumbens (NAc), and lateral hypothalamus (LH). While cocaine withdrawal increases glutamate release from LHb onto VTA-mPFC projectors, it reduces presynaptic release onto VTA-NAc projectors, leaving LHb synapses onto VTA-to-LH unaffected. Altogether, cocaine withdrawal promotes distinct adaptations at identified LHb-to-VTA circuits, which provide a framework for understanding the circuit basis of the negative states emerging during abstinence of drug intake.


2021 ◽  
Vol 12 ◽  
Author(s):  
Francesca Cisani ◽  
Guendalina Olivero ◽  
Cesare Usai ◽  
Gilles Van Camp ◽  
Stefania Maccari ◽  
...  

Antibodies recognizing the amino-terminal domain of receptor subunit proteins modify the receptor efficiency to controlling transmitter release in isolated nerve endings (e.g., synaptosomes) indirectly confirming their presence in these particles but also allowing to speculate on their subunit composition. Western blot analysis and confocal microscopy unveiled the presence of the GluA1, GluA2, GluA3, and GluA4 receptor subunits in cortical synaptosomes. Functional studies confirmed the presence of presynaptic release-regulating AMPA autoreceptors in these terminals, whose activation releases [3H]D-aspartate ([3H]D-Asp, here used as a marker of glutamate) in a NBQX-dependent manner. The AMPA autoreceptors traffic in a constitutive manner, since entrapping synaptosomes with the pep2-SVKI peptide (which interferes with the GluA2-GRIP1/PICK1 interaction) amplified the AMPA-evoked releasing activity, while the inactive pep2-SVKE peptide was devoid of activity. Incubation of synaptosomes with antibodies recognizing the NH2 terminus of the GluA2 and the GluA3 subunits increased, although to a different extent, the GluA2 and 3 densities in synaptosomal membranes, also amplifying the AMPA-evoked glutamate release in a NBQX-dependent fashion. We then analyzed the releasing activity of complement (1:300) from both treated and untreated synaptosomes and found that the complement-induced overflow occurred in a DL-t-BOA-sensitive, NBQX-insensitive fashion. We hypothesized that anti-GluA/GluA complexes in neuronal membranes could trigger the classic pathway of activation of the complement, modifying its releasing activity. Accordingly, the complement-evoked release of [3H]D-Asp from antiGluA2 and anti-GluA3 antibody treated synaptosomes was significantly increased when compared to untreated terminals and facilitation was prevented by omitting the C1q component of the immunocomplex. Antibodies recognizing the NH2 terminus of the GluA1 or the GluA4 subunits failed to affect both the AMPA and the complement-evoked tritium overflow. Our results suggest the presence of GluA2/GluA3-containing release-regulating AMPA autoreceptors in cortical synaptosomes. Incubation of synaptosomes with commercial anti-GluA2 or anti-GluA3 antibodies amplifies the AMPA-evoked exocytosis of glutamate through a complement-independent pathway, involving an excessive insertion of AMPA autoreceptors in plasma membranes but also affects the complement-dependent releasing activity, by promoting the classic pathway of activation of the immunocomplex. Both events could be relevant to the development of autoimmune diseases typified by an overproduction of anti-GluA subunits.


2020 ◽  
Author(s):  
Anu G. Nair ◽  
Paola Muttathukunnel ◽  
Martin Müller

AbstractPresynaptic homeostatic plasticity (PHP) stabilizes synaptic transmission by counteracting impaired neurotransmitter receptor function through increased presynaptic release. PHP is thought to be triggered by impaired receptor function, and to involve a stereotypic signaling pathway. However, here we demonstrate that different receptor perturbations that similarly impair synaptic activity result in vastly different responses at the Drosophila neuromuscular junction. While competitive receptor inhibition is not compensated by PHP, receptor pore block and allosteric inhibition induce compensatory PHP. Intriguingly, PHP triggered by receptor pore block and allosteric inhibition involve distinct presynaptic adaptations, including differential modulation of the active-zone scaffold Bruchpilot and short-term plasticity. Moreover, while PHP upon allosteric receptor inhibition does not require molecules underlying pore-block induced PHP (RIM and dysbindin), it is promoted by presynaptic Protein Kinase D. Thus, synapses not only respond differentially to similar activity impairments, but achieve homeostatic compensation via distinct mechanisms, highlighting the diversity of homeostatic signaling.


Sign in / Sign up

Export Citation Format

Share Document