Postembedding light- and electron microscopic immunocytochemistry of amino acids: description of a new model system allowing identical conditions for specificity testing and tissue processing

1987 ◽  
Vol 69 (1) ◽  
Author(s):  
O.P. Ottersen
Author(s):  
Michael Koonce

Pharmacological and correlative light and electron microscopic studies suggest that the two major cytoskeletal systems, the microtubules (MTs) and microfilaments (MFs), are involved in the directed transport of intracellular organelles. However, the details of organelle-cytoskeletal interactions and force generation are not known, nor is it clear whether transport is solely a MT or MF-based phenomenon, a coordinated effort, or if each system supports different classes of motility. Here I describe an isolated cytoskeletal “framework” derived from an unusual species of freshwater amoeba that provides a model system in which to examine these questions. We are intending to use this preparation to study the interactions with and movement of both isolated native and artificial organelles.


Author(s):  
E.M. Kuhn ◽  
K.D. Marenus ◽  
M. Beer

Fibers composed of different types of collagen cannot be differentiated by conventional electron microscopic stains. We are developing staining procedures aimed at identifying collagen fibers of different types.Pt(Gly-L-Met)Cl binds specifically to sulfur-containing amino acids. Different collagens have methionine (met) residues at somewhat different positions. A good correspondence has been reported between known met positions and Pt(GLM) bands in rat Type I SLS (collagen aggregates in which molecules lie adjacent to each other in exact register). We have confirmed this relationship in Type III collagen SLS (Fig. 1).


Author(s):  
Veronika Burmeister ◽  
N. Ludvig ◽  
P.C. Jobe

Electron microscopic immunocytochemistry provides an important tool to determine the ultrastructural distribution of various molecules in both normal and pathologic tissues. However, the specific immunostaining may be obscured by artifactual immunoreaction product, misleading the investigator. Previous observations show that shortening the incubation period with the primary antibody from the generally used 12-24 hours to 1 hour substantially reduces the artifactual immunostaining. We now extend this finding by the demonstration of artifact-free ultrastructural localization of the Ca2/calmodulindependent cyclic nucleotide phosphodiesterase (CaM-dependent PDE) immunoreactivity in brain.Anesthetized rats were perfused transcardially with phosphate-buffered saline followed by a fixative containing paraformaldehyde (4%) and glutaraldehyde (0.25%) in PBS. The brains were removed, and 40μm sections were cut with a vibratome. The sections were processed for immunocytochemistry as described by Ludvig et al. Both non-immune rabbit serum and specific CaM-dependent PDE antibodies were used. In both experiments incubations were at one hour and overnight. The immunostained sections were processed for electron microscopic examination.


Author(s):  
D. J. McComb ◽  
N. Ryan ◽  
E. Horvath ◽  
K. Kovacs ◽  
E. Nagy ◽  
...  

Conventional light and electron microscopic techniques failed to clarify the cellular composition and derivation of spontaneous and induced, intrasellar and transplanted pituitary adenomas in rats (1). In the present work, electron microscopic immunocytochemistry was applied to evaluate five adenohypo-physial tumors using a technique described by Moriarty and Garner (2). Spontaneously occurring pituitary adenomas (group 1) were harvested from aging female Long-Evans rats. R-Amsterdam rats were treated with 2 x 1.0 mg estrone acetate (HogivaI) s.c. weekly for 6 months. Pituitary adenomas in excess of 30 mg were removed from these animals to make up the tumors of group 2. Groups 3 and 4 consisted of estrogen-induced autonomous transplan¬ted pituitary tumors MtT.WlO and MtT.F4. Group 5 was a radiation-induced transplanted autonomous pituitary tumor MtT.W5. The tumors of groups 3,4 and 5 were allowed to proliferate in host rats 6-8 weeks prior to removal for processing. Tissue was processed for transmission electron microscopy (glutaraldehyde fixation, OsO4 postfixation and epoxy resin embedding), and electron microscopic immunocytochemistry (3% paraformaldehyde fixation and Araldite embedding).


Genetics ◽  
1998 ◽  
Vol 150 (3) ◽  
pp. 977-986 ◽  
Author(s):  
Yangsuk Park ◽  
John Hanish ◽  
Arthur J Lustig

Abstract Previous studies from our laboratory have demonstrated that tethering of Sir3p at the subtelomeric/telomeric junction restores silencing in strains containing Rap1-17p, a mutant protein unable to recruit Sir3p. This tethered silencing assay serves as a model system for the early events that follow recruitment of silencing factors, a process we term initiation. A series of LexA fusion proteins in-frame with various Sir3p fragments were constructed and tested for their ability to support tethered silencing. Interestingly, a region comprising only the C-terminal 144 amino acids, termed the C-terminal domain (CTD), is both necessary and sufficient for restoration of silencing. Curiously, the LexA-Sir3N205 mutant protein overcomes the requirement for the CTD, possibly by unmasking a cryptic initiation site. A second domain spanning amino acids 481-835, termed the nonessential for initiation domain (NID), is dispensable for the Sir3p function in initiation, but is required for the recruitment of the Sir4p C terminus. In addition, in the absence of the N-terminal 481 amino acids, the NID negatively influences CTD activity. This suggests the presence of a third region, consisting of the N-terminal half (1-481) of Sir3p, termed the positive regulatory domain (PRD), which is required to initiate silencing in the presence of the NID. These data suggest that the CTD “active” site is under both positive and negative control mediated by multiple Sir3p domains.


Sign in / Sign up

Export Citation Format

Share Document