Specific arrangements of human satellite III DNA sequences in human chromosomes

Chromosoma ◽  
1979 ◽  
Vol 71 (2) ◽  
pp. 153-166 ◽  
Author(s):  
R. S. Beauchamp ◽  
A. R. Mitchell ◽  
R. A. Buckland ◽  
C. J. Bostock
2014 ◽  
Vol 955-959 ◽  
pp. 419-422
Author(s):  
Gui Lin Liu ◽  
Yan Ping Ding ◽  
Yan Ling Wu ◽  
Wen Zhang

Telomeric DNA of human chromosomes plays a significant role in physiological processes such as cell cycle, aging, cancer and genetic stability due to its special sequence and structure. The research on small molecule ligands targeting G-quadruplex formed by such special sequence has attracted considerable attention, and has achieved great breakthrough. In this paper, we summarize the DNA sequences and structures of three kinds of typical human telomeric G-quadruplex, providing an important reference for further research.


Recombinant DNA technology has contributed greatly to the precision of chromosome analysis in man. Breakpoints of chromosome deletions and rearrangements may be defined on a chromosome map whose landmarks are the loci of DNA sequences rather than Giemsa bands. Flow cytogenetics allows the extent of chromosome duplications and deletions to be measured more precisely than has hitherto been possible. DNA probes can reveal hidden translocations through the application of in situ hybridization, and may be used as markers to determine the parental origin of non-disjunction. It is evident that a study of the pathology of human chromosomes now requires the combined skills of recombinant DNA and cytology.


2021 ◽  
Vol 7 (3) ◽  
pp. 215-219
Author(s):  
Mohammed Abdulazeez ◽  
◽  
Stefanie Kankel ◽  
Thomas Liehr ◽  
◽  
...  

Variants in size of the acrocentric short arms (acro-ps) are normally not reported and considered as chromosomal heteromorphisms (CHMs) without any influence on the carrier’s phenotype. However, if acro-ps are translocated to ends of A-chromosomes (i.e. human chromosomes 1-22 and X or Y), those rearrangements are studied in more detail. The aim of the study: Here we characterized 11 healthy carriers of a non-acrocentric satellited chromosomes der(A)t(A;acro)(pter or qter;p1?1.2) to determine the frequency of chromosome 15p and 22p in such rearrangements. Materials and methods: 11 carriers of one (10 cases) or two (1 case) der(A)t(A;acro) were identified during routine cytogenetic analyses. They were originally referred due to infertility or due to a mentally retarded child with otherwise abnormal karyotype. Here derivative chromosomes were studied by fluorescence in situ hybridization applying probes D15Z1 (specific for 15p11.2) and D22Z4 (specific for 22p11.2). As there are no DNA-sequences available for 13p11.2, 14p11.2 and 21p11.2 these regions could not be tested. Results: D15Z1 sequences were identified in 1 out of 12 derivatives der(A)t(A;acro). D22Z1 could not be detected in any of the 11 remainder derivatives. However, only 3 of the 12 der(A)t(A;acro) had acro-ps large enough to potentially comprise sub-band p11.2. Conclusion: In contrast to der(Y)t(Y;acro)(q12;p1?1.2), where in at least 65% of the cases the acro-p part contains D15Z1 sequences, here it could be shown that in der(A)t(A;acro) 15p involvement can be substantiated much less frequently. Also, in none of the two groups D22Z4-sequences were detected in acro-p-parts yet. Besides, breakpoint of acro-pparts in der(A)t(A;acro) seem to be in ~75% of the cases distal from p11.2.


Nature ◽  
2005 ◽  
Vol 434 (7034) ◽  
pp. 724-731 ◽  
Author(s):  
LaDeana W. Hillier ◽  
Tina A. Graves ◽  
Robert S. Fulton ◽  
Lucinda A. Fulton ◽  
Kymberlie H. Pepin ◽  
...  

1986 ◽  
Vol 28 (5) ◽  
pp. 631-644 ◽  
Author(s):  
Arvind Babu ◽  
Ram S. Verma

The constitutive heterochromatin of human chromosomes is evaluated by various selective staining techniques, i.e., CBG, G-11, distamycin A plus 4,6-diamidino-2-phenylindole-2-HCl (DA/DAPI), the fluorochrome D287/170, and Giemsa staining following the treatments with restriction endonucleases AluI and HaeIII. It is suggested that the constitutive heterochromatin could be arbitrarily divided into at least seven types depending on the staining profiles expressed by different regions of C-bands. The pericentromeric C-bands of chromosomes 1, 5, 7, 9, 13–18, and 20–22 consist of more than one type of chromatin, of which chromosome 1 presents the highest degree of heterogeneity. Chromosomes 3 and 4 show relatively less consistent heterogeneous fractions in their C-bands. The C-bands of chromosomes 10, 19, and the Y do not have much heterogeneity but have characteristic patterns with other methods using restriction endonucleases. Chromosomes 2, 6, 8, 11, 12, and X have homogeneous bands stained by the CBG technique only. Among the chromosomes with smaller pericentric C-bands, chromosome 18 shows frequent heteromorphic variants for the size and position (inversions) of the AluI resistant fraction of C-band. The analysis of various types of heterochromatin with respect to specific satellite and nonsatellite DNA sequences suggest that the staining profiles are probably related to sequence diversity.Key words: polymorphism, heteromorphism, heterogeneity, banding, restriction endonucleases.


Sign in / Sign up

Export Citation Format

Share Document