Natal philopatry in bannertailed kangaroo rats

1984 ◽  
Vol 15 (2) ◽  
pp. 151-155 ◽  
Author(s):  
W. Thomas Jones
Genome ◽  
2013 ◽  
Vol 56 (7) ◽  
pp. 407-414 ◽  
Author(s):  
Jacqueline M. Doyle ◽  
Gregor Siegmund ◽  
Joseph D. Ruhl ◽  
Soo Hyung Eo ◽  
Matthew C. Hale ◽  
...  

Historically, many population genetics studies have utilized microsatellite markers sampled at random from the genome and presumed to be selectively neutral. Recent studies, however, have shown that microsatellites can occur in transcribed regions, where they are more likely to be under selection. In this study, we mined microsatellites from transcriptomes generated by 454-pyrosequencing for three vertebrate species: lake sturgeon (Acipenser fulvescens), tiger salamander (Ambystoma tigrinum), and kangaroo rat (Dipodomys spectabilis). We evaluated (i) the occurrence of microsatellites across species; (ii) whether particular gene ontology terms were over-represented in genes that contained microsatellites; (iii) whether repeat motifs were located in untranslated regions or coding sequences of genes; and (iv) in silico polymorphism. Microsatellites were less common in tiger salamanders than in either lake sturgeon or kangaroo rats. Across libraries, trinucleotides were found more frequently than any other motif type, presumably because they do not cause frameshift mutations. By evaluating variation across reads assembled to a given contig, we were able to identify repeat motifs likely to be polymorphic. Our study represents one of the first comparative data sets on the distribution of vertebrate microsatellites within expressed genes. Our results reinforce the idea that microsatellites do not always occur in noncoding DNA, but commonly occur in expressed genes.


1942 ◽  
Vol 23 (3) ◽  
pp. 328 ◽  
Author(s):  
William B. Davis

1979 ◽  
Vol 237 (1) ◽  
pp. R80-R88 ◽  
Author(s):  
S. Sakaguchi ◽  
S. F. Glotzbach ◽  
H. C. Heller

Unanesthetized, unrestrained kangaroo rats (Dipodomys) were studied to examine the changes in the frequency and duration of sleep states caused by long-term manipulations of hypothalamic temperature (Thy) at a thermoneutral (30 degrees C) and a low (20 degrees C) ambient temperature (Ta). A cold stimulus present in either the hypothalamus or the skin decreased both the total sleep time (TST) and the ratio of paradoxical sleep (PS) to TST. At a low Ta, TST, but not the PS-to-TST ratio, was increased by raising Thy, indicating that a cold peripheral stimulus could differentially inhibit PS. At a thermoneutral Ta, cooling Thy decreased both TST and the PS/TST. Changes in the amount of PS were due largely to changes in the frequency, but not the duration, of individual episodes of PS, suggesting that the transition to PS is partially dependent on the thermoregulatory conditions existing during slow-wave sleep (SWS). These results are consistent with the recent findings that the thermoregulatory system is functional during SWS but is inhibited or inactivated during PS.


Behaviour ◽  
2017 ◽  
Vol 154 (7-8) ◽  
pp. 785-807 ◽  
Author(s):  
Ladislav Naďo ◽  
Renáta Chromá ◽  
Peter Kaňuch

Social groups of bats that operate under fission–fusion dynamics tend to establish and maintain non-random associations. We examined the social and genetic structure of the Leisler’s bat (Nyctalus leisleri), a species that is typical of tree-dwelling and long-distance migratory species in Europe. We used long-term co-occurrence data (capture-recapture sampling of roosting individuals) in combination with individual genetic relatedness (inferred from a set of microsatellite markers) to assess relationships between structural, temporal and genetic properties of roosting groups. Our results showed that social structure in groups of roosting Leisler’s bat was not random. Social clusters revealed by network analysis were almost identical to demographic cohorts, which indicates that Leisler’s bats are able to maintain social bonds only over a single season. After the period of active maternal care, roosting groups became smaller with a significantly higher level of genetic relatedness among adult females in contrast to the pregnancy and lactation stages. This provides some evidence that temporal social associations may be positively correlated with genetic relatedness. Low recapture rates of bats across seasons in light of natal philopatry indicates a shorter life span of individuals likely due to high mortality during long distance migratory movements. This probably has the most significant effect on the social system of this species.


2018 ◽  
Vol 221 (22) ◽  
pp. jeb186700 ◽  
Author(s):  
M. Janneke Schwaner ◽  
David C. Lin ◽  
Craig P. McGowan
Keyword(s):  

2017 ◽  
Vol 4 (8) ◽  
pp. 170153 ◽  
Author(s):  
Alexander R. Gaos ◽  
Rebecca L. Lewison ◽  
Michael P. Jensen ◽  
Michael J. Liles ◽  
Ana Henriquez ◽  
...  

The complex processes involved with animal migration have long been a subject of biological interest, and broad-scale movement patterns of many marine turtle populations still remain unresolved. While it is widely accepted that once marine turtles reach sexual maturity they home to natal areas for nesting or reproduction, the role of philopatry to natal areas during other life stages has received less scrutiny, despite widespread evidence across the taxa. Here we report on genetic research that indicates that juvenile hawksbill turtles ( Eretmochelys imbricata ) in the eastern Pacific Ocean use foraging grounds in the region of their natal beaches, a pattern we term natal foraging philopatry. Our findings confirm that traditional views of natal homing solely for reproduction are incomplete and that many marine turtle species exhibit philopatry to natal areas to forage. Our results have important implications for life-history research and conservation of marine turtles and may extend to other wide-ranging marine vertebrates that demonstrate natal philopatry.


1963 ◽  
Vol 44 (3) ◽  
pp. 423
Author(s):  
Richard B. Forbes

Sign in / Sign up

Export Citation Format

Share Document