hypothalamic temperature
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 0)

H-INDEX

25
(FIVE YEARS 0)

2017 ◽  
Vol 12 (5) ◽  
pp. 662-667 ◽  
Author(s):  
Matthijs T.W. Veltmeijer ◽  
Dineke Veeneman ◽  
Coen C.C.W. Bongers ◽  
Mihai G. Netea ◽  
Jos W. van der Meer ◽  
...  

Purpose:Exercise increases core body temperature (TC) due to metabolic heat production. However, the exercise-induced release of inflammatory cytokines including interleukin-6 (IL-6) may also contribute to the rise in TC by increasing the hypothalamic temperature set point. This study investigated whether the exercise-induced increase in TC is partly caused by an altered hypothalamic temperature set point.Methods:Fifteen healthy, active men age 36 ± 14 y were recruited. Subjects performed submaximal treadmill exercise in 3 randomized test conditions: (1) 400 mg ibuprofen and 1000 mg acetaminophen (IBU/APAP), (2) 1000 mg acetaminophen (APAP), and (3) a control condition (CTRL). Acetaminophen and ibuprofen were used to block the effect of IL-6 at a central and peripheral level, respectively. TC, skin temperature, and heart rate were measured continuously during the submaximal exercise tests.Results:Baseline values of TC, skin temperature, and heart rate did not differ across conditions. Serum IL-6 concentrations increased in all 3 conditions. A significantly lower peak TC was observed in IBU/APAP (38.8°C ± 0.4°C) vs CTRL (39.2°C ± 0.5°C, P = .02) but not in APAP (38.9°C ± 0.4°C) vs CTRL. Similarly, a lower ΔTC was observed in IBU/APAP (1.7°C ± 0.3°C) vs CTRL (2.0°C ± 0.5°C, P < .02) but not in APAP (1.7°C ± 0.5°C) vs CTRL. No differences were observed in skin temperature and heart-rate responses across conditions.Conclusions:The combined administration of acetaminophen and ibuprofen resulted in an attenuated increase in TC during exercise compared with a CTRL. This observation suggests that a prostaglandin-E2-induced elevated hypothalamic temperature set point may contribute to the exercise-induced rise in TC.


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e111501 ◽  
Author(s):  
Cletiana Gonçalves Fonseca ◽  
Washington Pires ◽  
Milene Rodrigues Malheiros Lima ◽  
Juliana Bohnen Guimarães ◽  
Nilo Resende Viana Lima ◽  
...  

2008 ◽  
Vol 48 (10) ◽  
pp. 1293 ◽  
Author(s):  
Shane K. Maloney

Laboratory and free-ranging studies on the emu, ostrich and kiwi show ratites to be competent homeotherms. While body temperature and basal metabolic rate are lower in ratites than other birds, all of the thermoregulatory adaptations present in other birds are well established in ratites. The thermoneutral zone has been established for the emu and kiwi, and extends to 10°C. Below that zone, homeothermy is achieved via the efficient use of insulation and elevated metabolic heat production. In the heat, emus and ostriches increase respiratory evaporative water loss and use some cutaneous water loss. Respiratory alkalosis is avoided by reducing tidal volume. In severe heat, tidal volume increases, but the emu becomes hypoxic and hypocapnic, probably by altering blood flow to the parabronchi, resulting in ventilation/perfusion inhomogeneities. Ostriches are capable of uncoupling brain temperature from arterial blood temperature, a phenomenon termed selective brain cooling. This mechanism may modulate evaporative effector responses by manipulating hypothalamic temperature, as in mammals. The implications of thermal physiology for ratite production systems include elevated metabolic costs for homeothermy at low ambient temperature. However, the emu and ostrich are well adapted to high environmental temperatures.


2007 ◽  
Vol 292 (5) ◽  
pp. R2059-R2067 ◽  
Author(s):  
Shane K. Maloney ◽  
Duncan Mitchell ◽  
Graham Mitchell ◽  
Andrea Fuller

To test whether baboons are capable of implementing selective brain cooling, we measured, every 5 min, the temperature in their hypothalamus, carotid arterial bloodstream, and abdominal cavity. The baboons were unrestrained and exposed to 22°C for 7 days and then to a cyclic environment with 15°C at night and 35°C during the day for a further 7 days. During the latter 7 days some of the baboons also were exposed to radiant heat during the day. For three days, during heat exposure, water was withheld. At no time was the hypothalamus cooler than carotid arterial blood, despite brain temperatures above 40°C. With little variation, the hypothalamus was consistently 0.5°C warmer than arterial blood. At high body temperatures, the hypothalamus was sometimes cooler than the abdomen. Abdominal temperature was more variable than arterial blood and tended to exceed arterial blood temperature at higher body temperatures. Hypothalamic temperature cooler than a warm abdomen is not evidence for selective brain cooling. In species that can implement selective brain cooling, the brain is most likely to be cooler than carotid arterial blood when an animal is hyperthermic, during heat exposure, and also dehydrated and undisturbed by human presence. When we exposed baboons to high ambient temperatures while they were water deprived and undisturbed, they never implemented selective brain cooling. We conclude that baboons cannot implement selective brain cooling and can find no convincing evidence that any primate species can do so.


2007 ◽  
Vol 292 (3) ◽  
pp. R1298-R1305 ◽  
Author(s):  
Shane K. Maloney ◽  
Duncan Mitchell ◽  
Dominique Blache

The degree of variability in the temperature difference between the brain and carotid arterial blood is greater than expected from the presumed tight coupling between brain heat production and brain blood flow. In animals with a carotid rete, some of that variability arises in the rete. Using thermometric data loggers in five sheep, we have measured the temperature of arterial blood before it enters the carotid rete and after it has perfused the carotid rete, as well as hypothalamic temperature, every 2 min for between 6 and 12 days. The sheep were conscious, unrestrained, and maintained at an ambient temperature of 20–22°C. On average, carotid arterial blood and brain temperatures were the same, with a decrease in blood temperature of 0.35°C across the rete and then an increase in temperature of the same magnitude between blood leaving the rete and the brain. Rete cooling of arterial blood took place at temperatures below the threshold for selective brain cooling. All of the variability in the temperature difference between carotid artery and brain was attributable statistically to variability in the temperature difference across the rete. The temperature difference between arterial blood leaving the rete and the brain varied from −0.1 to 0.9°C. Some of this variability was related to a thermal inertia of the brain, but the majority we attribute to instability in the relationship between brain blood flow and brain heat production.


2006 ◽  
Vol 100 (4) ◽  
pp. 1347-1354 ◽  
Author(s):  
Jack A. Boulant

In 1965, H. T. Hammel proposed a neuronal model to explain set-point thermoregulation. His model was based on a synaptic network encompassing four different types of hypothalamic neurons: i.e., warm-sensitive and temperature-insensitive neurons and heat loss and heat production effector neurons. Although some modifications to this model are suggested, recent electrophysiological and morphological studies support many of the model's major tenets. Hypothalamic warm-sensitive neurons integrate core and peripheral thermal information. These neurons sense changes in hypothalamic temperature, and they orient their dendrites medially and laterally to receive ascending afferent input from cutaneous thermoreceptors. Temperature-insensitive neurons have a different dendritic orientation and may provide constant reference signals, which are important in determining thermoregulatory set points. In Hammel's model, temperature-sensitive and -insensitive neurons send mutually antagonistic synaptic inputs to effector neurons controlling various thermoregulatory responses. The model predicts that warm-sensitive neurons synaptically excite heat loss effector neurons and inhibit heat production effector neurons. In recent studies, one counterpart of these effector neurons may be “excitatory postsynaptic potential-driven neurons,” the activity of which is dependent on synaptic excitation from nearby cells. Excitatory postsynaptic potential-driven neurons have sparse dendrites that appear to be specifically oriented, either medially or laterally, presumably to receive selective synaptic input from a discrete source. Another counterpart of effector neurons may be “silent neurons,” which have extensive dendritic branches that may receive synaptic excitation from remote sources. Because some silent neurons receive synaptic inhibition from nearby warm-sensitive neurons, Hammel's model would predict that they have a role in heat production or heat retention responses.


2005 ◽  
Vol 383 (1-2) ◽  
pp. 182-187 ◽  
Author(s):  
Paolo Capitani ◽  
Matteo Cerri ◽  
Roberto Amici ◽  
Francesca Baracchi ◽  
Christine Ann Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document