An ?-mating-type-specific mutation causing specific defect in sexual agglutinability in the yeast Saccharomyces cerevisiae

1985 ◽  
Vol 9 (3) ◽  
pp. 185-189 ◽  
Author(s):  
Katsunori Suzuki ◽  
Naohiko Yanagishima

1986 ◽  
Vol 6 (2) ◽  
pp. 688-702 ◽  
Author(s):  
J M Ivy ◽  
A J Klar ◽  
J B Hicks

Mating type in the yeast Saccharomyces cerevisiae is determined by the MAT (a or alpha) locus. HML and HMR, which usually contain copies of alpha and a mating type information, respectively, serve as donors in mating type interconversion and are under negative transcriptional control. Four trans-acting SIR (silent information regulator) loci are required for repression of transcription. A defect in any SIR gene results in expression of both HML and HMR. The four SIR genes were isolated from a genomic library by complementation of sir mutations in vivo. DNA blot analysis suggests that the four SIR genes share no sequence homology. RNA blots indicate that SIR2, SIR3, and SIR4 each encode one transcript and that SIR1 encodes two transcripts. Null mutations, made by replacement of the normal genomic allele with deletion-insertion mutations created in the cloned SIR genes, have a Sir- phenotype and are viable. Using the cloned genes, we showed that SIR3 at a high copy number is able to suppress mutations of SIR4. RNA blot analysis suggests that this suppression is not due to transcriptional regulation of SIR3 by SIR4; nor does any SIR4 gene transcriptionally regulate another SIR gene. Interestingly, a truncated SIR4 gene disrupts regulation of the silent mating type loci. We propose that interaction of at least the SIR3 and SIR4 gene products is involved in regulation of the silent mating type genes.



Genetics ◽  
1977 ◽  
Vol 85 (3) ◽  
pp. 373A-393
Author(s):  
James B Hicks ◽  
Ira Herskowitz

ABSTRACT The two mating types of the yeast Saccharomyces cerevisiae can be interconverted in both homothallic and heterothallic strains. Previous work indicates that all yeast cells contain the information to be both a and α and that the HO gene (in homothallic strains) promotes a change in mating type by causing a change at the mating type locus itself. In both heterothallic and homothallic strains, a defective α mating type locus can be converted to a functional a locus and subsequently to a functional α locus. In contrast, action of the HO gene does not restore mating ability to a strain defective in another gene for mating which is not at the mating type locus. These observations indicate that a yeast cell contains an additional copy (or copies) of α information, and lead to the "cassette" model for mating type interconversion. In this model, HM  a and hmα loci are blocs of unexpressed α regulatory information, and HMα and hm  a loci are blocs of unexpressed a regulatory information. These blocs are silent because they lack an essential site for expression, and become active upon insertion of this information (or a copy of the information) into the mating type locus by action of the HO gene.





1989 ◽  
Vol 9 (9) ◽  
pp. 3992-3998
Author(s):  
A M Dranginis

STA1 encodes a secreted glucoamylase of the yeast Saccharomyces cerevisiae var. diastaticus. Glucoamylase secretion is controlled by the mating type locus MAT; a and alpha haploid yeast cells secrete high levels of the enzyme, but a/alpha diploid cells produce undetectable amounts. It has been suggested that STA1 is regulated by MATa2 (I. Yamashita, Y. Takano, and S. Fukui, J. Bacteriol. 164:769-773, 1985), which is a MAT transcript of previously unknown function. In contrast, this work shows that deletion of the entire MATa2 gene had no effect on STA1 regulation but that deletion of MATa1 sequences completely abolished mating-type control. In all cases, glucoamylase activity levels reflected STA1 mRNA levels. It appears that STA1 is a haploid-specific gene that is regulated by MATa1 and a product of the MAT alpha locus and that this regulation occurs at the level of RNA accumulation. STA1 expression was also shown to be glucose repressible. STA1 mRNA was induced in diploids during sporulation along with SGA, a closely linked gene that encodes an intracellular sporulation-specific glucoamylase of S. cerevisiae. A diploid strain with a MATa1 deletion showed normal induction of STA1 in sporulation medium, but SGA expression was abolished. Therefore, these two homologous and closely linked glucoamylase genes are induced by different mechanisms during sporulation. STA1 induction may be a response to the starvation conditions necessary for sporulation, while SGA induction is governed by the pathway by which MAT regulates sporulation. The strain containing a complete deletion of MATa2 grew, mated, and sporulated normally.



Genetics ◽  
1980 ◽  
Vol 94 (4) ◽  
pp. 891-898
Author(s):  
Rodney J Rothstein ◽  
Fred Sherman

ABSTRACT The CYC7-H2 mutation causes an approximately 20-fold overproduction of iso-2-cytochromo c in a and α haploid strains of the yeast Saccharomyces cerevisiae due to an alteration in the nontranslated regulatory region that is presumably contiguous with the structural region. In this investigation, we demonstrated that heterozygosity at the mating type locus, a /α or a/a/α/α, prevents expression of the overproduction, while homozygosity, a/a and α/α and hemizygosity, a/O and α/O, allow full expression of the CYC7-H2 mutation, equivalent to the expression observed in a and α haploid strains. There is no decrease in the overproduction of iso-2-cytochrome c in a/α diploid strains containing either of the other two similar mutations, CYC7-H1 and CYC7-H3. It appears as if active expression of one or another of the mating-type alleles is required for the overproduction of iso-2-cytochrome c in CYC7-H2 mutants.



2021 ◽  
pp. mbc.E20-12-0757
Author(s):  
Corrina G. Robertson ◽  
Manuella R. Clark-Cotton ◽  
Daniel J. Lew

Haploid cells of the budding yeast Saccharomyces cerevisiae communicate using secreted pheromones and mate to form diploid zygotes. Mating is monogamous, resulting in the fusion of precisely one cell of each mating type. Monogamous mating in crowded conditions, where cells have access to more than one potential partner, raises the question of how multiple-mating outcomes are prevented. Here we identify mutants capable of mating with multiple partners, revealing the mechanisms that ensure monogamous mating. Before fusion, cells develop polarity foci oriented towards potential partners. Competition between these polarity foci within each cell leads to disassembly of all but one focus, thus favoring a single fusion event. Fusion promotes the formation of heterodimeric complexes between subunits that are uniquely expressed in each mating type. One complex shuts off haploid-specific gene expression, and the other shuts off the ability to respond to pheromone. Zygotes able to form either complex remain monogamous, but zygotes lacking both can re-mate.



Genetics ◽  
1993 ◽  
Vol 135 (3) ◽  
pp. 711-718 ◽  
Author(s):  
R L Keil ◽  
A D McWilliams

Abstract The preservation of sequence homogeneity and copy number of tandemly repeated genes may require specific mechanisms or regulation of recombination. We have identified mutations that specifically affect recombination among natural repetitions in the yeast Saccharomyces cerevisiae. The rrm3 mutation stimulates mitotic recombination in the naturally occurring tandem repeats of the rDNA and copper chelatin (CUP1) genes. This mutation does not affect recombination of several other types of repeated genes tested including Ty elements, mating type information and duplications created by transformation. In addition to stimulating exchange among the multiple CUP1 repeats at their natural chromosomal location, rrm3 also increases recombination of a duplication of CUP1 units present at his4. This suggests that the RRM3 gene may encode a sequence-specific factor that contributes to a global suppression of mitotic exchange in sequences that can be maintained as tandem arrays.



1985 ◽  
Vol 5 (11) ◽  
pp. 3069-3073
Author(s):  
I Yamashita ◽  
S Fukui

In the yeast Saccharomyces cerevisiae, glucoamylase activity appears specifically in sporulating cells heterozygous for the mating-type locus (MAT). We identified a sporulation-specific glucoamylase gene (SGA) and show that expression of SGA is positively regulated by the mating-type genes, both MATa1 and MAT alpha 2. Northern blot analysis revealed that control of SGA is exerted at the level of RNA production. Expression of SGA or the consequent degradation of glycogen to glucose in cells is not required for meiosis or sporulation, since MATa/MAT alpha diploid cells homozygous for an insertion mutation at SGA still formed four viable ascospores.



Sign in / Sign up

Export Citation Format

Share Document