Stress distribution in a circular cylindrical shell with a circular cutout

1965 ◽  
Vol 34 (3) ◽  
pp. 161-172 ◽  
Author(s):  
A. K. Naghdi ◽  
A. C. Eringen
1964 ◽  
Vol 31 (4) ◽  
pp. 667-675 ◽  
Author(s):  
Philip G. Hodge

A long circular cylindrical shell is to be pierced with a circular cutout, and it is desired to design a plane annular reinforcing ring which will restore the shell to its initial strength. Upper and lower bounds on the design of the reinforcement are obtained. Although these bounds are far a part, it is conjectured that the upper bound, in addition to being safe, is reasonably close to the minimum weight design. Some suggestions for further work on the problem are advanced.


1969 ◽  
Vol 36 (1) ◽  
pp. 39-46 ◽  
Author(s):  
M. V. V. Murthy

A theoretical analysis is presented for the membrane and bending stresses around an elliptic hole in a long, thin, circular cylindrical shell with the major axis of the hole parallel to the axis of the shell. The analysis has been carried out for the case of axial tension. The method of solution involves a perturbation in a curvature parameter and the results obtained are valid, if the hole is small in size compared to the shell. Formulas, from which the complete stress distribution at the hole can be calculated, are presented.


1975 ◽  
Vol 42 (1) ◽  
pp. 105-109 ◽  
Author(s):  
P. Seide ◽  
A. S. Hafiz

In this investigation, the stress distribution due to uniaxial tension of an infinitely long, thin, circular cylindrical shell with two equal small circular holes located along a generator is obtained. The problem is solved by the superposition of solutions previously obtained for a cylinder with a single circular hole. The satisfaction of boundary conditions on the free surfaces of the holes, together with uniqueness and overall equilibrium conditions, yields an infinite set of linear algebraic equations involving Hankel and Bessel functions of complex argument. The stress distribution along the boundaries of the holes and the interior of the shell is investigated. In particular, the value of the maximum stress is calculated for a wide range of parameters, including the limiting case in which the holes almost touch and the limiting case in which the radius of the cylinder becomes very large. As is the case for a flat plate, the stress-concentration factor is reduced by the presence of another hole.


1977 ◽  
Vol 12 (1) ◽  
pp. 53-61 ◽  
Author(s):  
J Pattabiraman ◽  
V Ramamurti

The problem of stress concentration around cutouts in shells is an important one in the design of nuclear pressure vessels, boilers, pressure hulls of submarines, aircraft structures, pipe connections and tube and ball mills used in chemical industries. By using the finite-difference scheme suggested by Budiansky, the solution to the problem of a cylindrical shell without a cutout, subjected to an asymmetric load, is derived first. Then, the negatives of the stress resultants and stress couples at a given radius obtained from the above solution are combined with a transverse shear force to form the edge conditions for a circular cylindrical shell containing a circular cutout of radius a. The desired results are finally obtained by superposing these two solutions.


2000 ◽  
Vol 68 (2) ◽  
pp. 344-346 ◽  
Author(s):  
R. Ramesh Kumar ◽  
S. Jose ◽  
G. Venkateswara Rao

Analytical solution for the tangential stress distribution ahead of a hole is needed for the theoretical prediction of notched strength of brittle laminate using the well-known W-N criteria. In the present study, tangential stress distribution in an orthotropic circular cylindrical shell under uniaxial loading with a circular hole is obtained intuitively with the use of a stress function. A good agreement is obtained for the stresses around and ahead of the circular hole in 0deg4±30degs and 90 deg laminates with the finite element results.


Sign in / Sign up

Export Citation Format

Share Document