Stress Concentration in a Stretched Cylindrical Shell With Two Equal Circular Holes

1975 ◽  
Vol 42 (1) ◽  
pp. 105-109 ◽  
Author(s):  
P. Seide ◽  
A. S. Hafiz

In this investigation, the stress distribution due to uniaxial tension of an infinitely long, thin, circular cylindrical shell with two equal small circular holes located along a generator is obtained. The problem is solved by the superposition of solutions previously obtained for a cylinder with a single circular hole. The satisfaction of boundary conditions on the free surfaces of the holes, together with uniqueness and overall equilibrium conditions, yields an infinite set of linear algebraic equations involving Hankel and Bessel functions of complex argument. The stress distribution along the boundaries of the holes and the interior of the shell is investigated. In particular, the value of the maximum stress is calculated for a wide range of parameters, including the limiting case in which the holes almost touch and the limiting case in which the radius of the cylinder becomes very large. As is the case for a flat plate, the stress-concentration factor is reduced by the presence of another hole.

1985 ◽  
Vol 52 (4) ◽  
pp. 927-932
Author(s):  
R. Solecki ◽  
F. Forouhar

Harmonic vibrations of a circular, cylindrical shell of rectangular planform and with an arbitrarily located crack, are investigated. The problem is described by Donnell’s equations and solved using triple finite Fourier transformation of discontinuous functions. The unknowns of the problem are the discontinuities of the slope and of three displacement components across the crack. These last quantities are replaced, using constitutive equations, by curvatures and strain in order to improve convergence and to represent explicitly the singularities at the tips. The formulas for differentiation of discontinuous functions are derived using Green-Gauss theorem. Application of the boundary conditions at the crack leads to a homogeneous system of linear algebraic equations. The frequencies are obtained from the characteristic equation resulting from this system. Numerical results for special cases are provided.


1966 ◽  
Vol 10 (01) ◽  
pp. 25-48
Author(s):  
Richard P. Bernicker

A linearized two-dimensional theory is presented for high-speed hydrofoils near the free surface. The "direct" problem (hydrofoil shape specified) is attacked by replacing the actual foil with vortex and source sheets. The resulting integral equation for the strength of the singularity distribution is recast into an infinite set of linear algebraic equations relating the unknown constants in a Glauert-type vorticity expansion to the boundary condition on the foil. The solution is achieved using a matrix inversion technique and it is found that the matrix relating the known and unknown constants is a function of depth of submergence alone. Inversion of this matrix at each depth allows the vorticity constants to be calculated for any arbitrary foil section by matrix multiplication. The inverted matrices have been calculated for several depth-to-chord ratios and are presented herein. Several examples for specific camber and thickness distributions are given, and results indicate significant effects in the force characteristics at depths less than one chord. In particular, thickness effects cause a loss of lift at shallow submergences which may be an appreciable percentage of the total design lift. The second part treats the "indirect" problem of designing a hydrofoil sectional shape at a given depth to achieve a specified pressure loading. Similar to the "direct" problem treated in the first part, integral equations are derived for the camber and thickness functions by replacing the actual foil by vortex and source sheets. The solution is obtained by recasting these equations into an infinite set of linear algebraic equations relating the constants in a series expansion of the foil geometry to the known pressure boundary conditions. The matrix relating the known and unknown constants is, again, a function of the depth of submergence alone, and inversion techniques allow the sectional shape to be determined for arbitrary design pressure distributions. Several examples indicate the procedure and results are presented for the change in sectional shape for a given pressure loading as the depth of submergence of the foil is decreased.


1971 ◽  
Vol 37 (304) ◽  
pp. 2254-2262
Author(s):  
Minoru HAMADA ◽  
Kazuo YOKOYA ◽  
Masayuki HAMAMOTO ◽  
Tadashi MASUDA

2020 ◽  
Vol 28 (2) ◽  
pp. 149-159
Author(s):  
Jiří Kopal ◽  
Miroslav Rozložník ◽  
Miroslav Tůma

AbstractThe problem of solving large-scale systems of linear algebraic equations arises in a wide range of applications. In many cases the preconditioned iterative method is a method of choice. This paper deals with the approximate inverse preconditioning AINV/SAINV based on the incomplete generalized Gram–Schmidt process. This type of the approximate inverse preconditioning has been repeatedly used for matrix diagonalization in computation of electronic structures but approximating inverses is of an interest in parallel computations in general. Our approach uses adaptive dropping of the matrix entries with the control based on the computed intermediate quantities. Strategy has been introduced as a way to solve di cult application problems and it is motivated by recent theoretical results on the loss of orthogonality in the generalized Gram– Schmidt process. Nevertheless, there are more aspects of the approach that need to be better understood. The diagonal pivoting based on a rough estimation of condition numbers of leading principal submatrices can sometimes provide inefficient preconditioners. This short study proposes another type of pivoting, namely the pivoting that exploits incremental condition estimation based on monitoring both direct and inverse factors of the approximate factorization. Such pivoting remains rather cheap and it can provide in many cases more reliable preconditioner. Numerical examples from real-world problems, small enough to enable a full analysis, are used to illustrate the potential gains of the new approach.


1969 ◽  
Vol 36 (1) ◽  
pp. 39-46 ◽  
Author(s):  
M. V. V. Murthy

A theoretical analysis is presented for the membrane and bending stresses around an elliptic hole in a long, thin, circular cylindrical shell with the major axis of the hole parallel to the axis of the shell. The analysis has been carried out for the case of axial tension. The method of solution involves a perturbation in a curvature parameter and the results obtained are valid, if the hole is small in size compared to the shell. Formulas, from which the complete stress distribution at the hole can be calculated, are presented.


1978 ◽  
Vol 45 (4) ◽  
pp. 839-844 ◽  
Author(s):  
E. B. Hansen

The circumferential membrane and bending stresses at the edges of two identical elliptical holes in a circular cylindrical shell loaded by axial tension are computed by means of an integral equation method. Pairs of holes of which the center line is along a generator of the shell, along a directrix, or in a direction forming an angle of 45° with the generators are considered. For each of these hole configurations results are presented for a number of hole distances, hole sizes, and axis ratios.


Sign in / Sign up

Export Citation Format

Share Document