Extracellular potassium concentration and membrane potential in rabbit gastrocnemius muscle during tourniquet ischemia

1982 ◽  
Vol 392 (4) ◽  
pp. 335-339 ◽  
Author(s):  
Eva Jennische ◽  
Henrik Hagberg ◽  
Hengo Haljam�e
Author(s):  
J Firth

The normal range of potassium concentration in serum is 3.5 to 5.0 mmol/litre and within cells it is 150 to 160 mmol/litre, the ratio of intracellular to extracellular potassium concentration being a critical determinant of cellular resting membrane potential and thereby of the function of excitable tissues....


1976 ◽  
Vol 39 (6) ◽  
pp. 1184-1192 ◽  
Author(s):  
W. R. Schlue

1. The sensory neurons in the leech central nervous system differ in their accommodation to linearly rising currents. Advantage was taken of these differences to study the ionic mechanism of accommodation in single pairs of N (noxious), P (pressure), and T (touch) cells. 2. Nonlinearities in membrane-potential changes and current-voltage relationships with square-wave and ramp currents are more pronounced in P and T cells than in N cells. The accommodation coefficients increase in conditions that reflect this delayed rectification. When rectification is absent, the accommodation coefficients depart from unity only slightly or not at all. 3. Accommodation coefficients remain unchanged when half of the chloride in the bathing medium is replaced by sulfate. Accommodation coefficients become greater when the extracellular potassium concentration is reduced from 4 to 0 mM, and decrease when the concentration is raised to 8 mM. The membrane potential changes by only a few millivolts. 4. As extracellular potassium concentration is increased, the action potential is lengthened and the maximal rate of fall of the action potential is reduced. With concentrations greater than 4 mM these relationships are linear, but depart from linearity at lower concentrations. The amplitude of the undershoot decreases linearly as the extracellular potassium concentration increases from 4 to 16 mM, and increases non-linearly at concentrations below 4 mM. 5. The rapid accommodation of leech neurons is based primarily on an increased potassium conductance. The possibility is considered that concentration changes like those produced experimentally may occur naturally, affecting integrative processes in the central nervous system.


1984 ◽  
Vol 108 (1) ◽  
pp. 305-314
Author(s):  
B. L. BREZDEN ◽  
D. R. GARDNER

The mean resting potential in the heart ventricle muscle cells of the freshwater snail Lymnaea stagnalis was found to be −61.2±3.5 (˙˙) mV (ranging from −56mV to −68mV). The average intracellular potassium concentration was estimated to be 51.5±14.6(˙˙) m (ranging from 27.8 m to 77.3 m). The membrane of the heart ventricle muscle cells appears to be permeable to both potassium and chloride, as changes in the extracellular concentration of either of these ions resulted in a change in the membrane potential. A ten-fold change in the extracellular potassium concentration was associated with a 50.4±3.8(˙˙) mV slope when the potassium concentration was above about 6 m. Deviations from the straight-line relation predicted for a potassium electrode could be accounted for by introducing a term for sodium permeability. The ionic basis of the membrane potential in these cells can be described by a modified form of the Goldman-Hodgkin- Katz equation.


1976 ◽  
Vol 39 (4) ◽  
pp. 909-923 ◽  
Author(s):  
I. Parnas ◽  
S. Hochstein ◽  
H. Parnas

1. Theoretical computations were conducted on a computer model of a segmented, nonhomogeneous axon to understand the mechanism of frequency block of conduction. 2. The model is based on the Hodgkin-Huxley equations modified in several ways to better describe the cockroach axon. We used cockroach parameters where available. 3. The increase in fiber radius was spread over a series of segments to approximate a taper. We found that a taper allows a larger overall increase in fiber diameter than a single step to be successfully passed. 4. We studied effects on a train of impulses. The modified equations included effects due to changes in extracellular potassium concentration resulting from the repetitive firing of the axon. 5. An increase in diameter which allows a single spike to pass blocks the subsequent impulses in a train at the taper if potassium concentration variability is introduced. This could explain the low-pass filter characteristics of axon constrictions. 6. Results of the model fit well with the experiemental spike shape and height. Data were computed for the refractory period and its dependence on the taper parameters.


Sign in / Sign up

Export Citation Format

Share Document