The oxidation and hot corrosion behavior of tungsten-fiber reinforced composites

1975 ◽  
Vol 9 (1) ◽  
pp. 45-67 ◽  
Author(s):  
M. E. El-Dahshan ◽  
D. P. Whittle ◽  
J. Stringer
Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1128
Author(s):  
Saravanan Palaniyappan ◽  
Maik Trautmann ◽  
Yiran Mao ◽  
Johann Riesch ◽  
Parikshith Gowda ◽  
...  

Tungsten fiber-reinforced tungsten (Wf/W) composites are being developed to improve the intrinsic brittleness of tungsten. In these composites, engineered fiber/matrix interfaces are crucial in order to realize toughening mechanisms. For such a purpose, yttria (Y2O3), being one of the suitable interface materials, could be realized through different coating techniques. In this study, the deposition of thin films of yttria on a 150 µm tungsten wire by physical and chemical vapor deposition (PVD and CVD) techniques is comparatively investigated. Although fabrication of yttria is feasible through both CVD and PVD routes, certain coating conditions such as temperature, growth rate, oxidation of Wf, etc., decide the qualitative nature of a coating to a particular extent. In the case of PVD, the oxidation of Wf is highly reduced compared to the WO3 formation in high-temperature CVD coating processes. Yttria-coated tungsten fibers are examined comprehensively to characterize their microstructure, phase, and chemical composition using SEM, XRD, and Raman spectroscopy techniques, respectively.


2019 ◽  
Vol 12 (1) ◽  
pp. 4-76 ◽  
Author(s):  
Krittirash Yorseng ◽  
Mavinkere R. Sanjay ◽  
Jiratti Tengsuthiwat ◽  
Harikrishnan Pulikkalparambil ◽  
Jyotishkumar Parameswaranpillai ◽  
...  

Background: This era has seen outstanding achievements in materials science through the advances in natural fiber-based composites. The new environmentally friendly and sustainability concerns have imposed the chemists, biologists, researchers, engineers, and scientists to discover the engineering and structural applications of natural fiber reinforced composites. Objective: To present a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials. Methods: The patent data have been taken from the external links of US patents such as IFI CLAIMS Patent Services, USPTO, USPTO Assignment, Espacenet, Global Dossier, and Discuss. Results: The present world scenario demands the usage of natural fibers from agricultural and forest byproducts as a reinforcement material for fiber reinforced composites. Natural fibers can be easily extracted from plants and animals. Recently natural fiber in nanoscale is preferred over micro and macro scale fibers due to its superior thermo-mechanical properties. However, the choice of macro, micro, and nanofibers depends on their applications. Conclusion: This document presents a comprehensive evaluation of information from 2000 to 2018 in United States patents in the field of natural fibers and their composite materials.


Sign in / Sign up

Export Citation Format

Share Document