Dependence of Crack Propagation/Deflection Mechanism on Characteristics of Fiber Coating or Interphase in Ceramics Matrix Continuous Fiber Reinforced Composites (Postprint)

Author(s):  
M. Braginsky ◽  
Craig P. Przybyla
2012 ◽  
Vol 461 ◽  
pp. 338-342 ◽  
Author(s):  
Da Zhao Deng ◽  
Ji Xiang Luo

Based on the Voronoi cell finite element can also reflect fiber reinforced composites interface to take off the layer and matrix crack propagation of the new cell (X-VCFEM cell)[1]. Combined with the re-mesh strategy and grid dynamic technology, Simulated analysis in different inclusion distribution, interface crack propagation for fiber reinforced composites, the results show that for the model with multiple Voronoi cell, The horizontal tension was the largest; For only a Voronoi cell, The size of the horizontal tension was little change.The result was very important reference value for manufacturing process and engineering application of fiber reinforced composite materials.


2019 ◽  
Vol 12 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Chao Hu ◽  
Zeyu Sun ◽  
Yi Xiao ◽  
Qinghua Qin

Background: Additive Manufacturing (AM) enables the accurate fabrication of designed parts in a short time without the need for specific molds and tools. Although polymers are the most widely used raw materials for AM, the products printed by them are inherently weak, unable to sustain large tension or bending stresses. A need for the manufacturing of fiber reinforced composites, especially continuous fiber as reinforcement, has attracted great attention in recent years. Objective: Identifying the progress of the AM of continuous carbon fiber reinforced composites over time and therefore establishing a foundation on which current research can be based. Methods: Elaborating the most related patents regarding the AM techniques for fabricating continuous fiber reinforced composites in the top three institutions, including Markforged company, Xi’an Jiaotong University and President and Fellows of Harvard College. Results: The recent patents in AM of continuous fiber reinforced composites are classified into two aspects: patents related to novel technique methods and patents related to novel structures. The current issues and future development of AM-based composites are given. Conclusion: New structures and techniques have been introduced into conventional 3D printers to enable the printing of continuous fiber reinforced composites. However, until now, Markforged is the only company commercializing the fabrication of this kind of composites based on AM technique. Numerous challenges and issues need to be solved so that AM of continuous fiber reinforced composites can be a new manufacturing method.


2002 ◽  
Vol 74 (4) ◽  
pp. 601-628 ◽  
Author(s):  
D. R. Moore ◽  
A. J. Cervenka

Characterization of continuous fiber-reinforced composites is examined in terms of processing, properties, and structure. Five processing and five property topics are then examined in terms of reviewing some of the historic background in these areas with the aim of identifying current issues and requirements for the future. The topics covered in the processing section are: polymeric matrix, impregnation, interfacial effects, residual stresses, and pre-preg tack. In the mechanical properties section the topics are: choice of standard, recycling and reusability, durability, environmental strength, and toughness. The paper provides a ten-point plan for future requirements.


Sign in / Sign up

Export Citation Format

Share Document