Plastic instability of a cylindrical angle-ply shell in biaxial tension

1995 ◽  
Vol 30 (5) ◽  
pp. 474-483
Author(s):  
P. A. Zinov'ev ◽  
S. V. Tsvetkov
Author(s):  
D. L. Rohr ◽  
S. S. Hecker

As part of a comprehensive study of microstructural and mechanical response of metals to uniaxial and biaxial deformations, the development of substructure in 1100 A1 has been studied over a range of plastic strain for two stress states.Specimens of 1100 aluminum annealed at 350 C were tested in uniaxial (UT) and balanced biaxial tension (BBT) at room temperature to different strain levels. The biaxial specimens were produced by the in-plane punch stretching technique. Areas of known strain levels were prepared for TEM by lapping followed by jet electropolishing. All specimens were examined in a JEOL 200B run at 150 and 200 kV within 24 to 36 hours after testing.The development of the substructure with deformation is shown in Fig. 1 for both stress states. Initial deformation produces dislocation tangles, which form cell walls by 10% uniaxial deformation, and start to recover to form subgrains by 25%. The results of several hundred measurements of cell/subgrain sizes by a linear intercept technique are presented in Table I.


Author(s):  
Lei Su ◽  
Qing An ◽  
Jiejie Li ◽  
Lin Wang ◽  
Yuhang Zhang ◽  
...  

Author(s):  
Nedunchezhian Srinivasan ◽  
R. Velmurugan ◽  
Lalith Kumar Bhaskar ◽  
Satish Kumar Singh ◽  
Bhanu Pant ◽  
...  

2007 ◽  
Vol 101 (3) ◽  
pp. 033540 ◽  
Author(s):  
Geoffrey H. Campbell ◽  
Gregory C. Archbold ◽  
Omar A. Hurricane ◽  
Paul L. Miller
Keyword(s):  

2011 ◽  
Vol 62 ◽  
pp. 21-35 ◽  
Author(s):  
Anis Ben Abdessalem ◽  
A. El Hami

In metal forming processes, different parameters (Material constants, geometric dimensions, loads …) exhibits unavoidable scatter that lead the process unreliable and unstable. In this paper, we interest particularly in tube hydroforming process (THP). This process consists to apply an inner pressure combined to an axial displacement to manufacture the part. During the manufacturing phase, inappropriate choice of the loading paths can lead to failure. Deterministic approaches are unable to optimize the process with taking into account to the uncertainty. In this work, we introduce the Reliability-Based Design Optimization (RBDO) to optimize the process under probabilistic considerations to ensure a high reliability level and stability during the manufacturing phase and avoid the occurrence of such plastic instability. Taking account of the uncertainty offer to the process a high stability associated with a low probability of failure. The definition of the objective function and the probabilistic constraints takes advantages from the Forming Limit Diagram (FLD) and the Forming Limit Stress Diagram (FLSD) used as a failure criterion to detect the occurrence of wrinkling, severe thinning, and necking. A THP is then introduced as an example to illustrate the proposed approach. The results show the robustness and efficiency of RBDO to improve thickness distribution and minimize the risk of potential failure modes.


2014 ◽  
Vol 658 ◽  
pp. 167-172 ◽  
Author(s):  
Liviu Andrusca ◽  
Viorel Goanta ◽  
Paul Doru Barsanescu

Testing cruciform specimens subjected to biaxial tension is one of the most widely used experimental techniques and more accurate at this time to determine the mechanical properties of materials and to verify the failure theories. This type of experiment allows the continuous monitoring of behavior of materials from the beginning of deformation until fracture under different ratios of forces and directions of the deformation, which transforms it into a very versatile testing method. We have varied the number of parameters and their values in order to achieve a uniform distribution of biaxial state of stresses and strains in the area tested. In theory, any material can be tested by stretching a biaxial cruciform specimen, but must be investigated in what way the shape of the specimen influence the data obtained. In this paper are presented the requirements that must be fulfilled by the samples used for tensile / compression biaxial tests and the design of cruciform specimens through FEA that meet these demands.


Carbon ◽  
1973 ◽  
Vol 11 (1) ◽  
pp. 43-57 ◽  
Author(s):  
W.L. Greenstreet ◽  
G.T. Yahr ◽  
R.S. Valachovic
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document