Temporal characteristics of efferent neuron discharge during muscle contraction in the crayfish claw

1975 ◽  
Vol 96 (4) ◽  
pp. 273-283 ◽  
Author(s):  
Dean O. Smith
Author(s):  
H. Mohri

In 1959, Afzelius observed the presence of two rows of arms projecting from each outer doublet microtubule of the so-called 9 + 2 pattern of cilia and flagella, and suggested a possibility that the outer doublet microtubules slide with respect to each other with the aid of these arms during ciliary and flagellar movement. The identification of the arms as an ATPase, dynein, by Gibbons (1963)strengthened this hypothesis, since the ATPase-bearing heads of myosin molecules projecting from the thick filaments pull the thin filaments by cross-bridge formation during muscle contraction. The first experimental evidence for the sliding mechanism in cilia and flagella was obtained by examining the tip patterns of molluscan gill cilia by Satir (1965) who observed constant length of the microtubules during ciliary bending. Further evidence for the sliding-tubule mechanism was given by Summers and Gibbons (1971), using trypsin-treated axonemal fragments of sea urchin spermatozoa. Upon the addition of ATP, the outer doublets telescoped out from these fragments and the total length reached up to seven or more times that of the original fragment. Thus, the arms on a certain doublet microtubule can walk along the adjacent doublet when the doublet microtubules are disconnected by digestion of the interdoublet links which connect them with each other, or the radial spokes which connect them with the central pair-central sheath complex as illustrated in Fig. 1. On the basis of these pioneer works, the sliding-tubule mechanism has been established as one of the basic mechanisms for ciliary and flagellar movement.


1995 ◽  
Vol 38 (5) ◽  
pp. 1014-1024 ◽  
Author(s):  
Robert L. Whitehead ◽  
Nicholas Schiavetti ◽  
Brenda H. Whitehead ◽  
Dale Evan Metz

The purpose of this investigation was twofold: (a) to determine if there are changes in specific temporal characteristics of speech that occur during simultaneous communication, and (b) to determine if known temporal rules of spoken English are disrupted during simultaneous communication. Ten speakers uttered sentences consisting of a carrier phrase and experimental CVC words under conditions of: (a) speech, (b) speech combined with signed English, and (c) speech combined with signed English for every word except the CVC word that was fingerspelled. The temporal features investigated included: (a) sentence duration, (b) experimental CVC word duration, (c) vowel duration in experimental CVC words, (d) pause duration before and after experimental CVC words, and (e) consonantal effects on vowel duration. Results indicated that for all durational measures, the speech/sign/fingerspelling condition was longest, followed by the speech/sign condition, with the speech condition being shortest. It was also found that for all three speaking conditions, vowels were longer in duration when preceding voiced consonants than vowels preceding their voiceless cognates, and that a low vowel was longer in duration than a high vowel. These findings indicate that speakers consistently reduced their rate of speech when using simultaneous communication, but did not violate these specific temporal rules of English important for consonant and vowel perception.


Sign in / Sign up

Export Citation Format

Share Document