Structure and properties of high-strength maraging steels

1970 ◽  
Vol 12 (7) ◽  
pp. 558-571 ◽  
Author(s):  
M. D. Perkas
2012 ◽  
Vol 76 (11) ◽  
pp. 1217-1220 ◽  
Author(s):  
V. V. Rusanenko ◽  
O. P. Zhukov ◽  
E. N. Blinova ◽  
V. P. Filippova ◽  
S. Yu. Makuschev

Author(s):  
I. Neuman ◽  
S.F. Dirnfeld ◽  
I. Minkoff

Experimental work on the spot welding of Maraging Steels revealed a surprisingly low level of strength - both in the as welded and in aged conditions. This appeared unusual since in the welding of these materials by other welding processes (TIG,MIG) the strength level is almost that of the base material. The maraging steel C250 investigated had the composition: 18wt%Ni, 8wt%Co, 5wt%Mo and additions of Al and Ti. It has a nominal tensile strength of 250 KSI. The heat treated structure of maraging steel is lath martensite the final high strength is reached by aging treatment at 485°C for 3-4 hours. During the aging process precipitation takes place of Ni3Mo and Ni3Ti and an ordered solid solution containing Co is formed.Three types of spot welding cycles were investigated: multi-pulse current cycle, bi-pulse cycle and single pulsle cycle. TIG welded samples were also tested for comparison.The microstructure investigations were carried out by SEM and EDS as well as by fractography. For multicycle spot welded maraging C250 (without aging), the dendrites start from the fusion line towards the nugget centre with an epitaxial growth region of various widths, as seen in Figure 1.


2020 ◽  
Vol 2020 (6) ◽  
pp. 20-26
Author(s):  
O.A. Gaivoronskyi ◽  
◽  
V.D. Poznyakov ◽  
O.M. Berdnikova ◽  
T.O. Alekseenko ◽  
...  

1970 ◽  
Vol 12 (3) ◽  
pp. 272-274 ◽  
Author(s):  
M. D. Perkas

2008 ◽  
Vol 35 (12) ◽  
pp. 2047-2051 ◽  
Author(s):  
李亚玲 Li Yaling ◽  
黄坚 Huang Jian ◽  
高志国 Gao Zhiguo ◽  
吴毅雄 Wu Yixiong ◽  
阎启 Yan Qi

MRS Bulletin ◽  
1995 ◽  
Vol 20 (8) ◽  
pp. 33-39 ◽  
Author(s):  
Morihiko Nakamura

More than 25 years have passed since Intermetallic Compounds, edited by Westbrook, was published. Since that time, enormous advances have been made in the understanding and usage of intermetallic compounds. It is known that intermetallic compounds are generally brittle. Thus, alloys that contain intermetallics may also be brittle. However, many intermetallic compounds are known to have extraordinary functions and characteristics that are not observed in ordinary metals and alloys. Thus, they function as magnetic materials, superconductors, semiconductors, hydrogen absorbing alloys, shape memory alloys, and so on.Many high-strength structural alloys like maraging steels and duralumins are strengthened by fine precipitates of intermetallic phases. Nickel-based superalloys, which are used for airplane-engine parts, contain 60-70% of Ni3Al-based intermetallics by volume fraction and exhibit high strength at high temperatures. Hard metals, which are used for cutting tools, are composed of a large amount of hard but brittle intermetallics like WC and a small amount of ductile cobalt. Intermetallic compounds like TiAl are also investigated for their applications as structural materials where high strength at high temperatures is required.In a strict sense, intermetallic compounds are composed of two or more metallic elements. In a wider sense, they are composed of metallic and/or semimetallic elements. Each is characterized by an ordered arrangement of two or more kinds of atoms, that is, the formation of a superlattice, and have various kinds of interatomic bonding, ranging from metallic to covalent or ionic bonding. The ordering of atoms and the strong interatomic bonding result in many attractive properties for intermetallic compounds.


2005 ◽  
Vol 396 (1-2) ◽  
pp. 320-332 ◽  
Author(s):  
A. Ghosh ◽  
B. Mishra ◽  
S. Das ◽  
S. Chatterjee

1990 ◽  
Vol 24 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Frank W. Gayle ◽  
Frank H. Heubaum ◽  
Joseph R. Pickens

2018 ◽  
Vol 196 ◽  
pp. 04035 ◽  
Author(s):  
Igor Kharchenko ◽  
Alexander Panchenko ◽  
Alexey Kharchenko ◽  
Vyacheslav Alekseev

This paper reports the results of experimental research of the effect of strain-restriction conditions on the structure and properties of sulfoaluminate expanding cementitious materials. Theoretical analysis of the development of pattern formation processes is performed by applying the developed rheological model, illustrating features of the kinetics of structure-forming processes according to the ratio of the potential index of extension with linear, flat and volumetric limitation of deformations of the extension. The results show that rheological model adequately correlates with the results of experimental studies and can be described mathematically. Found that with the volume limitation of deformations arising when mixing crystallographic phases with high density and strength, the pore structure of the cement stone contains mainly gel pores. This is the main prerequisite for obtaining a dense, high-strength and durable structure of cement stone and concrete on its basis.


2020 ◽  
Vol 138 (10) ◽  
pp. 49971
Author(s):  
Xinqiu Hong ◽  
Yongjing Xu ◽  
Liming Zou ◽  
Yan Vivian Li ◽  
Junwei He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document