Control of renal and extrarenal salt and water excretion by plasma angiotensin II in the kelp gull (Larus dominicanus)

1989 ◽  
Vol 158 (6) ◽  
pp. 651-660 ◽  
Author(s):  
D. A. Gray ◽  
T. Erasmus
2017 ◽  
Vol 25 (2) ◽  
pp. 125-127 ◽  
Author(s):  
Maria Virginia Petry ◽  
Luiz Liberato Costa Corrêa ◽  
Victória Renata Fontoura Benemann ◽  
Gabriela Bandasz Werle

1996 ◽  
Vol 271 (1) ◽  
pp. R73-R83 ◽  
Author(s):  
D. A. Giussani ◽  
R. A. Riquelme ◽  
F. A. Moraga ◽  
H. H. McGarrigle ◽  
C. R. Gaete ◽  
...  

We tested the hypothesis that the llama fetus has a blunted cardiovascular chemoreflex response to hypoxemia by investigating the effects of acute hypoxemia on perfusion pressure, heart rate, and the distribution of the combined ventricular output in 10 chronically instrumented fetal llamas at 0.6-0.7 gestation. Four llama fetuses had the carotid sinus nerves sectioned. In the intact fetuses, there was a marked bradycardia, an increase in perfusion pressure, and a pronounced peripheral vasoconstriction during hypoxemia. These cardiovascular responses during hypoxemia in intact fetuses were accompanied by a pronounced increase in plasma vasopressin, but not in plasma angiotensin II concentrations. Carotid denervation prevented the bradycardia at the onset of hypoxemia, but it did not affect the intense vasoconstriction during hypoxemia. Plasma vasopressin and angiotensin II levels were not measured in carotid-denervated fetuses. Our results do not support the hypothesis that the carotid chemoreflex during hypoxemia is blunted in the llama fetus. However, they emphasize that other mechanisms, such as increased vasopressin concentrations, operate to produce an intense vasoconstriction in hypoxemia. This intense vasoconstriction in the llama fetus during hypoxemia may reflect the influence of chronic exposure to the hypoxia of high altitude on the magnitude and gain of fetal cardiovascular responses to a superimposed acute episode of hypoxemia.


2017 ◽  
Vol 6 (7) ◽  
pp. R131-R145 ◽  
Author(s):  
Frans H H Leenen ◽  
Mordecai P Blaustein ◽  
John M Hamlyn

In the brain, angiotensinergic pathways play a major role in chronic regulation of cardiovascular and electrolyte homeostasis. Increases in plasma angiotensin II (Ang II), aldosterone, [Na+] and cytokines can directly activate these pathways. Chronically, these stimuli also activate a slow neuromodulatory pathway involving local aldosterone, mineralocorticoid receptors (MRs), epithelial sodium channels and endogenous ouabain (EO). This pathway increases AT1R and NADPH oxidase subunits and maintains/further increases the activity of angiotensinergic pathways. These brain pathways not only increase the setpoint of sympathetic activity per se, but also enhance its effectiveness by increasing plasma EO and EO-dependent reprogramming of arterial and cardiac function. Blockade of any step in this slow pathway or of AT1R prevents Ang II-, aldosterone- or salt and renal injury-induced forms of hypertension. MR/AT1R activation in the CNS also contributes to the activation of sympathetic activity, the circulatory and cardiac RAAS and increase in circulating cytokines in HF post MI. Chronic central infusion of an aldosterone synthase inhibitor, MR blocker or AT1R blocker prevents a major part of the structural remodeling of the heart and the decrease in LV function post MI, indicating that MR activation in the CNS post MI depends on aldosterone, locally produced in the CNS. Thus, Ang II, aldosterone and EO are not simply circulating hormones that act on the CNS but rather they are also paracrine neurohormones, locally produced in the CNS, that exert powerful effects in key CNS pathways involved in the long-term control of sympathetic and neuro-endocrine function and cardiovascular homeostasis.


1994 ◽  
Vol 7 (4 Pt 1) ◽  
pp. 295-301 ◽  
Author(s):  
R. M. Zusman ◽  
K. Y. Hui ◽  
J. Nussberger ◽  
D. M. Christensen ◽  
J. Higgins ◽  
...  

1988 ◽  
Vol 74 (4) ◽  
pp. 419-425 ◽  
Author(s):  
J. McMurray ◽  
A. D. Struthers

1. Atrial natriuretic peptide (ANP) has previously been shown to inhibit the renin–angiotensin–aldosterone system (RAAS) at several different levels. We have now investigated a further non-endocrine, renal interaction between ANP and the RAAS. 2. The effects of ANP and angiotensin II (ANG II) alone, and in combination, on urinary electrolyte and water excretion were studied in eight normal male subjects undergoing maximal water diuresis. 3. ANP caused a significant increase in urine flow and sodium excretion. ANG II alone was antidiuretic, antinatriuretic and antikaliuretic. When ANP was given against a background infusion of ANG II, urinary flow rate and electrolyte excretion increased from a new lower level to reach a value intermediate between that found with ANG II alone and ANP alone. 4. It is concluded that the renal effects of ANP are modified in the presence of simultaneously elevated levels of ANG II and that net water and electrolyte excretion reflect the sum of the opposing influences of each peptide. While this interplay may be non-specific, it is possible that ANP may exert some of its actions by specifically inhibiting the intrarenal effects of ANG II.


Sign in / Sign up

Export Citation Format

Share Document