Chemoreflex and endocrine components of cardiovascular responses to acute hypoxemia in the llama fetus

1996 ◽  
Vol 271 (1) ◽  
pp. R73-R83 ◽  
Author(s):  
D. A. Giussani ◽  
R. A. Riquelme ◽  
F. A. Moraga ◽  
H. H. McGarrigle ◽  
C. R. Gaete ◽  
...  

We tested the hypothesis that the llama fetus has a blunted cardiovascular chemoreflex response to hypoxemia by investigating the effects of acute hypoxemia on perfusion pressure, heart rate, and the distribution of the combined ventricular output in 10 chronically instrumented fetal llamas at 0.6-0.7 gestation. Four llama fetuses had the carotid sinus nerves sectioned. In the intact fetuses, there was a marked bradycardia, an increase in perfusion pressure, and a pronounced peripheral vasoconstriction during hypoxemia. These cardiovascular responses during hypoxemia in intact fetuses were accompanied by a pronounced increase in plasma vasopressin, but not in plasma angiotensin II concentrations. Carotid denervation prevented the bradycardia at the onset of hypoxemia, but it did not affect the intense vasoconstriction during hypoxemia. Plasma vasopressin and angiotensin II levels were not measured in carotid-denervated fetuses. Our results do not support the hypothesis that the carotid chemoreflex during hypoxemia is blunted in the llama fetus. However, they emphasize that other mechanisms, such as increased vasopressin concentrations, operate to produce an intense vasoconstriction in hypoxemia. This intense vasoconstriction in the llama fetus during hypoxemia may reflect the influence of chronic exposure to the hypoxia of high altitude on the magnitude and gain of fetal cardiovascular responses to a superimposed acute episode of hypoxemia.

1994 ◽  
Vol 72 (7) ◽  
pp. 782-787 ◽  
Author(s):  
L. Fan ◽  
S. Mukaddam-Daher ◽  
J. Gutkowska ◽  
B. S. Nuwayhid ◽  
E. W. Quillen Jr.

To further investigate the influence of renal nerves on renin secretion, the renin secretion responses to step reductions of renal perfusion pressure (RPP) were studied in conscious sheep with innervated kidneys (n = 5) and with bilaterally denervated kidneys (n = 5). The average basal level of RPP in sheep with denervated kidneys (82 ± 4 mmHg; 1 mmHg = 133.3 Pa) was similar to that in sheep with innervated kidneys (83 ± 3 mmHg). RPP was reduced in four sequential 15-min steps, to a final level of 54 ± 2 mmHg in sheep with innervated kidneys and to 57 ± 1 mmHg in denervated sheep. The renin secretion rate was increased as RPP was reduced in sheep with innervated kidneys. Baseline peripheral plasma renin activity was reduced and there was almost no response of renin secretion rate to reduction of RPP in sheep with denervated kidneys. Also, baseline renal blood flow, urine flow rate, sodium excretion rate, and potassium excretion rate were higher in sheep with denervated kidneys than those with innervated kidneys. Baseline plasma angiotensin II was similar in both groups of sheep. As RPP was decreased, plasma angiotensin II was increased in sheep with innervated kidneys, but was not significantly altered in sheep with denervated kidneys. Plasma atrial natriuretic factor was unaltered by either reduction of RPP or renal denervation. In conclusion, hormonal factors, such as angiotensin II and atrial natriuretic factor, do not account for the dramatic suppression of renin secretion in response to the reduction of RPP in sheep with bilateral renal denervation. Renal nerves are a necessary component in the control of renin secretion during reduction of RPP and may contribute to the regulation of baseline plasma renin activity and sodium excretion rate in conscious ewes.Key words: renin secretion, renal perfusion pressure, renal nerves, denervation, sheep.


1991 ◽  
Vol 261 (2) ◽  
pp. R420-R426
Author(s):  
M. Inoue ◽  
J. T. Crofton ◽  
L. Share

We have examined in conscious rats the interaction between centrally acting prostanoids and acetylcholine in the stimulation of vasopressin secretion. The intracerebroventricular (icv) administration of carbachol (25 ng) resulted in marked transient increases in the plasma vasopressin concentration and mean arterial blood pressure and a transient reduction in heart rate. Central cyclooxygenase blockade by pretreatment icv with either meclofenamate (100 micrograms) or indomethacin (100 micrograms) virtually completely blocked these responses. Prostaglandin (PG) D2 (20 micrograms icv) caused transient increases in the plasma vasopressin concentration (much smaller than after carbachol) and heart rate, whereas mean arterial blood pressure rose gradually during the 15-min course of the experiment. Pretreatment with the muscarinic antagonist atropine (10 micrograms icv) decreased the peak vasopressin response to icv PGD2 by approximately one-third but had no effect on the cardiovascular responses. We conclude that the stimulation of vasopressin release by centrally acting acetylcholine is dependent on increased prostanoid biosynthesis. On the other hand, stimulation of vasopressin release by icv PGD2 is partially dependent on activation of a cholinergic pathway.


1991 ◽  
Vol 260 (3) ◽  
pp. E333-E337 ◽  
Author(s):  
C. K. Klingbeil ◽  
V. L. Brooks ◽  
E. W. Quillen ◽  
I. A. Reid

Angiotensin II causes marked stimulation of drinking when it is injected centrally but is a relatively weak dipsogen when administered intravenously. However, it has been proposed that the dipsogenic action of systemically administered angiotensin II may be counteracted by the pressor action of the peptide. To test this hypothesis, the dipsogenic action of angiotensin II was investigated in dogs, in which low and high baroreceptor influences had been eliminated by denervation of the carotid sinus, aortic arch, and heart. In five sham-operated dogs, infusion of angiotensin II at 10 and 20 ng.kg-1.min-1 increased plasma angiotensin II concentration to 109.2 +/- 6.9 and 219.2 +/- 38.5 pg/ml and mean arterial pressure by 20 and 29 mmHg, respectively, but did not induce drinking. In four baroreceptor-denervated dogs, the angiotensin II infusions produced similar increases in plasma angiotensin II concentration and mean arterial pressure but, in contrast to the results in the sham-operated dogs, produced a dose-related stimulation of drinking. Water intake with the low and high doses of angiotensin II was 111 +/- 44 and 255 +/- 36 ml, respectively. The drinking responses to an increase in plasma osmolality produced by infusion of hypertonic sodium chloride were not different in the sham-operated and baroreceptor-denervated dogs. These results demonstrate that baroreceptor denervation increases the dipsogenic potency of intravenous angiotensin II and provides further support for the hypothesis that the dipsogenic action of intravenous angiotensin II is counteracted by the rise in blood pressure.


1995 ◽  
Vol 78 (5) ◽  
pp. 1688-1698 ◽  
Author(s):  
K. W. Saupe ◽  
C. A. Smith ◽  
K. S. Henderson ◽  
J. A. Dempsey

The purpose of this study was to determine the effects of changing blood pressure in the carotid sinus (Pcs) on ventilatory output during wakefulness and non-rapid-eye-movement sleep in unanesthetized dogs. Eight dogs were chronically instrumented so that ventilation, heart rate, and blood pressure could be measured while pressure in the isolated carotid sinus was rapidly changed by means of an extracorporeal perfusion circuit. Raising Pcs 35–75 mmHg consistently reduced ventilation 15–40% in a dose-response fashion, with little or no further diminution in minute ventilation as Pcs was further increased > 75 mmHg above control level. This decrease in minute ventilation was immediate, due primarily to a decrease in tidal volume, and was sustained over the 20-s period of elevated Pcs. Increases in Pcs also caused immediate sustained reductions in systemic blood pressure and heart rate, both of which also fell in a dose-dependent fashion. The ventilatory and systemic cardiovascular responses to increased Pcs were the same during wakefulness and non-rapid-eye-movement sleep. Decreasing Pcs 40–80 mmHg caused a sudden carotid chemoreceptor-mediated hyperpnea that was eliminated by hyperoxia. We conclude that increasing Pcs causes a reflex inhibition of ventilation and that this reflex may play a role in sleep-disordered breathing.


1976 ◽  
Vol 51 (s3) ◽  
pp. 497s-499s ◽  
Author(s):  
E. A. Rosei ◽  
P. M. Trust ◽  
J. J. Brown ◽  
R. Fraser ◽  
A. F. Lever ◽  
...  

1. Labetalol, a compound with both α- and β-adrenoreceptor-blocking actions, was given intravenously (1·5–2·0 mg/kg) in twenty recumbent hypertensive patients. 2. There was a rapid reduction in systolic and diastolic pressures in all, maintained up to 24 h in some subjects. 3. Severe hypotension was not seen in recumbent subjects, but postural hypotension was common. 4. Labetalol caused significant lowering of heart rate. 5. Labetalol induced significant and related lowering of plasma angiotensin II and aldosterone concentrations, most obviously when these were initially high. 6. In a cross-over comparison in five patients against 10 mg of propranolol intravenously, labetalol was more effective in lowering blood pressure, but less effective in lowering pulse rate or plasma angiotensin II.


1979 ◽  
Vol 236 (5) ◽  
pp. H769-H774
Author(s):  
H. O. Stinnett ◽  
D. F. Peterson ◽  
V. S. Bishop

In pentobarbital-anesthetized rabbits with aortic nerves cut, reflex heart rate and mean arterial pressure (MAP) changes were quantified in response to maximal central stimulation of the left aortic nerve (LANS) before and during steady-state changes in isolated carotid intrasinus pressure (ISP). To distinguish possible vagally mediated cardiopulmonary influences, responses were measured before and after vagotomy. Changes in MAP observed by altering ISP within +/- 15 mmHg of the equilibrium pressure (EP) were linear and inversely correlated to changes in ISP, with a slope of approximately 3 both before and after vagotomy (r greater than or equal to 0.929, P less than 0.05). The peak fall in MAP during LANS was dependent upon ISP. The change in the MAP responses to LANS for each mmHg change in ISP ranged from 1.7 with vagi intact to 1.3 after vagotomy. Heart rate was unaltered by isolation of the carotid sinus and was independent of the small changes in ISP between +/- 15 mmHg of EP. These results indicate that blood pressure changes elicited by the aortic baroreflex are extremely sensitive to the degree of carotid sinus compensation. Thus, to assess the sensitivity of any arterial reflex area, the existing level of compensation by other barosensitive areas must be known.


1992 ◽  
Vol 263 (2) ◽  
pp. R318-R323 ◽  
Author(s):  
M. Kamegai ◽  
M. S. Kristensen ◽  
J. Warberg ◽  
P. Norsk

To investigate the influence of carotid baroreflexes on plasma arginine vasopressin (AVP) in humans, eight healthy males underwent two sessions of passive head-up tilt to 60 degrees for 15 min each. During one of the sessions (sequence randomized), carotid baroreflexes were simultaneously stimulated by static neck suction of 23 +/- 1 mmHg during the whole period of head-up tilt. Only subjects who did not develop presyncopal symptoms during head-up tilt were included. Head-up tilt increased AVP significantly from 1.0 +/- 0.3 to 4.2 +/- 1.3 pg/ml (P less than 0.05). In contrast to this, AVP did not at any point in time increase significantly during head-up tilt when neck suction was applied. Plasma renin activity and heart rate were unaffected by neck suction, whereas mean arterial pressure and central venous pressure decreased. We conclude that the moderate but significant increase in plasma AVP during nonhypotensive head-up tilt is in part mediated by deloading of carotid baroreceptors induced by the acute fall in hydrostatic pressure at the level of the carotid sinus.


1992 ◽  
Vol 83 (5) ◽  
pp. 549-556 ◽  
Author(s):  
R. J. MacFadyen ◽  
M. Tree ◽  
A. F. Lever ◽  
J. L. Reid

1. The blood pressure, heart rate, hormonal and pressor responses to constant rate infusion of various doses of the angiotensin (type 1) receptor antagonist Losartan (DuP 753/MK 954) were studied in the conscious salt-deplete dog. 2. Doses in the range 0.1–3 μmin−1 kg−1 caused no change in blood pressure, heart rate or pressor response to angiotensin II (54 ng min−1kg−1), and a dose of 10 μgmin−1 kg−1 had no effect on blood pressure, but caused a small fall in the pressor response to angiotensin II. Infusion of Losartan at 30 μmin−1 kg−1 for 3 h caused a fall in mean blood arterial pressure from baseline (110.9 ± 11.2 to 95.0 ± 12.8 mmHg) and a rise in heart rate (from 84.6 ± 15.1 to 103 ± 15.2 beats/min). Baseline plasma angiotensin II (42.5 ± 11.8 pg/ml) and renin (64.5 ± 92.7 μ-units/ml) concentrations were already elevated in response to salt depletion and rose significantly after Losartan infusion to reach a plateau by 70 min. The rise in mean arterial blood pressure after a test infusion of angiotensin II (35.3 ± 11.6 mmHg) was reduced at 15 min (11.8 ± 6.8 mmHg) by Losartan and fell progressively with continued infusion (3 h, 4.3 ± 3.3 mmHg). The peak plasma angiotensin II concentration during infusion of angiotensin II was unaffected by Losartan, but the rise in plasma angiotensin II concentration during infusion was reduced because of the elevated background concentration. Noradrenaline infusion caused a dose-related rise in mean blood arterial pressure (1000 ngmin−1kg−1, +19.9 ± 8 mmHg; 2000ngmin−1 kg−1, +52.8 ± 13.9 mmHg) with a fall in heart rate (1000 ng min−1 kg−1, −27.9 ± 11.5 beats/min; 2000 ng min−1 kg−1, −31.2 ± 17.3 beats/min). During Losartan infusion the 1000 but not the 2000 ng min−1 kg−1 noradrenaline infusion caused a greater rise in mean arterial blood pressure and a greater fall in heart rate. The fall in heart rate tended to decrease with continued infusion of Losartan. Plasma catecholamine concentrations were unaffected by Losartan. In a further study, higher doses of Losartan (100, 300 and 1000 μg min−1 kg−1; 30 min) produced greater falls in mean arterial blood pressure also with a rise in heart rate and complete blockade of the pressor effect of infused angiotensin II. Some animals became disturbed at the highest dose. 3. Losartan produces rapid dose-related falls in blood pressure and a rise in heart rate and renin release with elevation of plasma angiotensin II. Pressor responses to angiotensin II are reduced at intermediate doses and are eliminated at high doses. Losartan does not appear to inhibit angiotensin II clearance from the plasma and may in some way increase it.


2011 ◽  
Vol 301 (4) ◽  
pp. R905-R915 ◽  
Author(s):  
Andre S. Mecawi ◽  
Tatiane Vilhena-Franco ◽  
Iracema G. Araujo ◽  
Luis C. Reis ◽  
Lucila L. K. Elias ◽  
...  

Estrogen receptors are located in important brain areas that integrate cardiovascular and hydroelectrolytic responses, including the subfornical organ (SFO) and supraoptic (SON) and paraventricular (PVN) nuclei. The aim of this study was to evaluate the influence of estradiol on cardiovascular and neuroendocrine changes induced by hemorrhagic shock in ovariectomized rats. Female Wistar rats (220–280 g) were ovariectomized and treated for 7 days with vehicle or estradiol cypionate (EC, 10 or 40 μg/kg, sc). On the 8th day, animals were subjected to hemorrhage (1.5 ml/100 g for 1 min). Hemorrhage induced acute hypotension and bradycardia in the ovariectomized-oil group, but EC treatment inhibited these responses. We observed increases in plasma angiotensin II concentrations and decreases in plasma atrial natriuretic peptide levels after hemorrhage; EC treatment produced no effects on these responses. There were also increases in plasma vasopressin (AVP), oxytocin (OT), and prolactin levels after the induction of hemorrhage in all groups, and these responses were potentiated by EC administration. SFO neurons and parvocellular and magnocellular AVP and OT neurons in the PVN and SON were activated by hemorrhagic shock. EC treatment enhanced the activation of SFO neurons and AVP and OT magnocellular neurons in the PVN and SON and AVP neurons in the medial parvocellular region of the PVN. These results suggest that estradiol modulates the cardiovascular responses induced by hemorrhage, and this effect is likely mediated by an enhancement of AVP and OT neuron activity in the SON and PVN.


Sign in / Sign up

Export Citation Format

Share Document