Properties of tropomyosin from the dual-regulated obliquely striated body wall muscle of the earthworm (Lumbricus terrestris L.)

1982 ◽  
Vol 3 (1) ◽  
pp. 57-74 ◽  
Author(s):  
Angela Ditgens ◽  
Jochen D'Haese ◽  
J. Victor Small ◽  
Apolinary Sobieszek
1925 ◽  
Vol s2-69 (274) ◽  
pp. 245-290
Author(s):  
A. J. GROVE

During the sexual congress of L.terrestris, the co-operating worms become attached to one another in a head-to-tail position in such a way that segments 9-11 of one are opposed to the clitellum of the other, and vice versa. At these points the attachment between the worms is an intimate one, assisted by the secretion of the glands associated with the diverticula of the setal pores found in certain segments, and is reinforced by the mutual penetration of the setae into the opposed body-surfaces. There is also a slighter attachment between segment 26 of one and 15 of the other. Each worm is enclosed in a slime-tube composed of mucus secreted from the epidermis. The exchange of seminal fluid is a mutual one. The fluid issues from the apertures of the vasa deferentia in segment 15, and is conducted beneath the slime-tube in pit-like depressions in the seminal grooves, which extend from segment 15 to the clitellum on each side of the body, to the clitellum, where it accumulates in the space between the lateral surfaces of segments 9-11 of one worm and the clitellum of the other. Eventually it becomes aggregated into masses in the groove between segments 9 and 10, and 10 and 11, and passes thence into the spermathecae. The seminal groove and its pit-like depressions are brought into existence by special muscles lying in the lateral blocks of longitudinal muscles of the body-wall.


1999 ◽  
Vol 202 (6) ◽  
pp. 661-674 ◽  
Author(s):  
K.J. Quillin

This study examined the relationship between ontogenetic increase in body size and the kinematics of peristaltic locomotion by the earthworm Lumbricus terrestris, a soft-bodied organism supported by a hydrostatic skeleton. Whereas the motions of most vertebrates and arthropods are based primarily on the changes in the joint angles between rigid body segments, the motions of soft-bodied organisms with hydrostatic skeletons are based primarily on the changes in dimensions of the deformable body segments themselves. The overall kinematics of peristaltic crawling and the dynamic shape changes of individual earthworm segments were measured for individuals ranging in body mass (mb) by almost three orders of magnitude (0.012-8.5 g). Preferred crawling speed varied both within and among individuals: earthworms crawled faster primarily by taking longer strides, but also by taking more strides per unit time and by decreasing duty factor. On average, larger worms crawled at a greater absolute speed than smaller worms (U p2finity mb0.33) and did so by taking slightly longer strides (l p2finity mb0.41, where l is stride length) than expected by geometric similarity, using slightly lower stride frequencies (f p2finity mb-0.07) and the same duty factor (df p2finity mb-0.03). Circumferential and longitudinal body wall strains were generally independent of body mass, while strain rates changed little as a function of body mass. Given the extent of kinematic variation within and among earthworms, the crawling of earthworms of different sizes can be considered to show kinematic similarity when the kinematic variables are normalized by body length. Since the motions of peristaltic organisms are based primarily on changes in the dimensions of the deformable body wall, the scaling of the material properties of the body wall is probably an especially important determinant of the scaling of the kinematics of locomotion.


1939 ◽  
Vol 16 (3) ◽  
pp. 251-257
Author(s):  
K. S. WU

1. The actions of certain drugs (acetylcholine, eserine, atropine, nicotine, adrenaline) on strips of the body wall of the earthworm (Lumbricus terrestris) and lugworm (Arenicola marina) are described. 2. The body wall of the earthworm and lugworm resembles the dorsum of the leech, and also vertebrate skeletal muscle, in the following points: relatively insensitive to acetylcholine alone, sensitivity to acetylcholine greatly increased by eserine, response to acetylcholine abolished by nicotine. In these points, the muscles mentioned contrast with the earthworm gut and the mammalian intestine, which are: very sensitive to acetylcholine alone, sensitivity not greatly increased by eserine, response to acetylcholine abolished by atropine. 3. The various types of body wall strip differ among themselves as regards spontaneous activity, response to eserine alone, and response to adrenaline.


1976 ◽  
Vol 65 (1) ◽  
pp. 39-50
Author(s):  
C. D. Drewes ◽  
C. R. Fourtner

1. Sensory neural units responding to sinusoidal stretching of the body wall were studied in the earthworm, Lumbricus terrestris L. 2. A phasic stretch-sensitive unit found in segmental nerve I responded optimally to stretching at frequencies of 4-6/min. 3. The number of spikes per stretch and the spike frequency in the unit were directly related to the amplitude of the applied stretch within a range of 0-2-0-7 mm stretch/segment. 4. The ranges of amplitude and frequency sensitivity for the unit in isolated preparations corresponded closely to stretch parameters seen during peristaltic locomotion in intact animals. 5. Stretch-sensitive responses in segmental nerve II-III were more variable; some units responded to longitudinal stretch while others responded to relaxation.


2007 ◽  
pp. 655-658
Author(s):  
EM Volkov ◽  
LF Nurullin ◽  
E Nikolsky ◽  
F Vyskočil

The miniature excitatory postsynaptic currents (MEPCs) of the muscle cells of the earthworm Lumbricus terrestris were recorded by glass microelectrodes. In a single synaptic zone, three types of MEPC were recorded: a fast single-exponential type that decayed with tau =0.9 ms, a slow single-exponential with tau = 9.2 ms and a two-exponential MEPC with tau = 1.3 and 8.5 ms, respectively. The muscle cells of earthworms contain populations of yet-unidentified ionic channels that might be different from the common nicotinic and muscarinic groups of acetylcholine receptors, since these MEPCs are not sensitive to d-tubocurarine, atropine, benzohexonium or proserine. Alternatively, besides ACh receptors, the membrane may contain receptors for another yet-unidentified excitatory transmitter.


2018 ◽  
Author(s):  
Kacy L. Gordon ◽  
Sara G. Payne ◽  
Lara M. Linden-High ◽  
Ariel M. Pani ◽  
Bob Goldstein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document