The action of cholinomimetic and cholinolytic agents, hemicholinium-3 and α- and β-bungarotoxin on the body wall muscle of the earthworm, lumbricus terrestris

Author(s):  
A.A. Hassoni ◽  
G.A. Kerkut ◽  
R.J. Walker
1925 ◽  
Vol s2-69 (274) ◽  
pp. 245-290
Author(s):  
A. J. GROVE

During the sexual congress of L.terrestris, the co-operating worms become attached to one another in a head-to-tail position in such a way that segments 9-11 of one are opposed to the clitellum of the other, and vice versa. At these points the attachment between the worms is an intimate one, assisted by the secretion of the glands associated with the diverticula of the setal pores found in certain segments, and is reinforced by the mutual penetration of the setae into the opposed body-surfaces. There is also a slighter attachment between segment 26 of one and 15 of the other. Each worm is enclosed in a slime-tube composed of mucus secreted from the epidermis. The exchange of seminal fluid is a mutual one. The fluid issues from the apertures of the vasa deferentia in segment 15, and is conducted beneath the slime-tube in pit-like depressions in the seminal grooves, which extend from segment 15 to the clitellum on each side of the body, to the clitellum, where it accumulates in the space between the lateral surfaces of segments 9-11 of one worm and the clitellum of the other. Eventually it becomes aggregated into masses in the groove between segments 9 and 10, and 10 and 11, and passes thence into the spermathecae. The seminal groove and its pit-like depressions are brought into existence by special muscles lying in the lateral blocks of longitudinal muscles of the body-wall.


1999 ◽  
Vol 202 (6) ◽  
pp. 661-674 ◽  
Author(s):  
K.J. Quillin

This study examined the relationship between ontogenetic increase in body size and the kinematics of peristaltic locomotion by the earthworm Lumbricus terrestris, a soft-bodied organism supported by a hydrostatic skeleton. Whereas the motions of most vertebrates and arthropods are based primarily on the changes in the joint angles between rigid body segments, the motions of soft-bodied organisms with hydrostatic skeletons are based primarily on the changes in dimensions of the deformable body segments themselves. The overall kinematics of peristaltic crawling and the dynamic shape changes of individual earthworm segments were measured for individuals ranging in body mass (mb) by almost three orders of magnitude (0.012-8.5 g). Preferred crawling speed varied both within and among individuals: earthworms crawled faster primarily by taking longer strides, but also by taking more strides per unit time and by decreasing duty factor. On average, larger worms crawled at a greater absolute speed than smaller worms (U p2finity mb0.33) and did so by taking slightly longer strides (l p2finity mb0.41, where l is stride length) than expected by geometric similarity, using slightly lower stride frequencies (f p2finity mb-0.07) and the same duty factor (df p2finity mb-0.03). Circumferential and longitudinal body wall strains were generally independent of body mass, while strain rates changed little as a function of body mass. Given the extent of kinematic variation within and among earthworms, the crawling of earthworms of different sizes can be considered to show kinematic similarity when the kinematic variables are normalized by body length. Since the motions of peristaltic organisms are based primarily on changes in the dimensions of the deformable body wall, the scaling of the material properties of the body wall is probably an especially important determinant of the scaling of the kinematics of locomotion.


1939 ◽  
Vol 16 (3) ◽  
pp. 251-257
Author(s):  
K. S. WU

1. The actions of certain drugs (acetylcholine, eserine, atropine, nicotine, adrenaline) on strips of the body wall of the earthworm (Lumbricus terrestris) and lugworm (Arenicola marina) are described. 2. The body wall of the earthworm and lugworm resembles the dorsum of the leech, and also vertebrate skeletal muscle, in the following points: relatively insensitive to acetylcholine alone, sensitivity to acetylcholine greatly increased by eserine, response to acetylcholine abolished by nicotine. In these points, the muscles mentioned contrast with the earthworm gut and the mammalian intestine, which are: very sensitive to acetylcholine alone, sensitivity not greatly increased by eserine, response to acetylcholine abolished by atropine. 3. The various types of body wall strip differ among themselves as regards spontaneous activity, response to eserine alone, and response to adrenaline.


1976 ◽  
Vol 65 (1) ◽  
pp. 39-50
Author(s):  
C. D. Drewes ◽  
C. R. Fourtner

1. Sensory neural units responding to sinusoidal stretching of the body wall were studied in the earthworm, Lumbricus terrestris L. 2. A phasic stretch-sensitive unit found in segmental nerve I responded optimally to stretching at frequencies of 4-6/min. 3. The number of spikes per stretch and the spike frequency in the unit were directly related to the amplitude of the applied stretch within a range of 0-2-0-7 mm stretch/segment. 4. The ranges of amplitude and frequency sensitivity for the unit in isolated preparations corresponded closely to stretch parameters seen during peristaltic locomotion in intact animals. 5. Stretch-sensitive responses in segmental nerve II-III were more variable; some units responded to longitudinal stretch while others responded to relaxation.


Genetics ◽  
1994 ◽  
Vol 137 (2) ◽  
pp. 483-498
Author(s):  
J Ahnn ◽  
A Fire

Abstract We have used available chromosomal deficiencies to screen for genetic loci whose zygotic expression is required for formation of body-wall muscle cells during embryogenesis in Caenorhabditis elegans. To test for muscle cell differentiation we have assayed for both contractile function and the expression of muscle-specific structural proteins. Monoclonal antibodies directed against two myosin heavy chain isoforms, the products of the unc-54 and myo-3 genes, were used to detect body-wall muscle differentiation. We have screened 77 deficiencies, covering approximately 72% of the genome. Deficiency homozygotes in most cases stain with antibodies to the body-wall muscle myosins and in many cases muscle contractile function is observed. We have identified two regions showing distinct defects in myosin heavy chain gene expression. Embryos homozygous for deficiencies removing the left tip of chromosome V fail to accumulate the myo-3 and unc-54 products, but express antigens characteristic of hypodermal, pharyngeal and neural development. Embryos lacking a large region on chromosome III accumulate the unc-54 product but not the myo-3 product. We conclude that there exist only a small number of loci whose zygotic expression is uniquely required for adoption of a muscle cell fate.


Development ◽  
1991 ◽  
Vol 111 (3) ◽  
pp. 667-681 ◽  
Author(s):  
P.Y. Goh ◽  
T. Bogaert

As part of a general study of genes specifying a pattern of muscle attachments, we identified and genetically characterised mutants in the mup-1 gene. The body wall muscles of early stage mup-1 embryos have a wild-type myofilament pattern but may extend ectopic processes. Later in embryogenesis, some body wall muscles detach from the hypodermis. Genetic analysis suggests that mup-1 has both a maternal and a zygotic component and is not required for postembryonic muscle growth and attachment. mup-1 mutants are suppressed by mutations in several genes that encode extracellular matrix components. We propose that mup-1 may encode a cell surface/extracellular matrix molecule required both for the positioning of body wall muscle attachments in early embryogenesis and the subsequent maintenance of these attachments to the hypodermis until after cuticle synthesis.


2000 ◽  
Vol 150 (1) ◽  
pp. 253-264 ◽  
Author(s):  
Teresa M. Rogalski ◽  
Gregory P. Mullen ◽  
Mary M. Gilbert ◽  
Benjamin D. Williams ◽  
Donald G. Moerman

Embryos homozygous for mutations in the unc-52, pat-2, pat-3, and unc-112 genes of C. elegans exhibit a similar Pat phenotype. Myosin and actin are not organized into sarcomeres in the body wall muscle cells of these mutants, and dense body and M-line components fail to assemble. The unc-52 (perlecan), pat-2 (α-integrin), and pat-3 (β-integrin) genes encode ECM or transmembrane proteins found at the cell–matrix adhesion sites of both dense bodies and M-lines. This study describes the identification of the unc-112 gene product, a novel, membrane-associated, intracellular protein that colocalizes with integrin at cell–matrix adhesion complexes. The 720–amino acid UNC-112 protein is homologous to Mig-2, a human protein of unknown function. These two proteins share a region of homology with talin and members of the FERM superfamily of proteins. We have determined that a functional UNC-112::GFP fusion protein colocalizes with PAT-3/β-integrin in both adult and embryonic body wall muscle. We also have determined that UNC-112 is required to organize PAT-3/β-integrin after it is integrated into the basal cell membrane, but is not required to organize UNC-52/perlecan in the basement membrane, nor for DEB-1/vinculin to localize with PAT-3/β-integrin. Furthermore, UNC-112 requires the presence of UNC-52/perlecan and PAT-3/β-integrin, but not DEB-1/vinculin to become localized to the muscle cell membrane.


1981 ◽  
Vol 3 (2) ◽  
pp. 71-82 ◽  
Author(s):  
Thota Srihari ◽  
Walter Wiehrer ◽  
Dirk Pette ◽  
Ben G. Harris

Sign in / Sign up

Export Citation Format

Share Document