Interrelation of fire hazard and resources of jet fuels

1989 ◽  
Vol 25 (10) ◽  
pp. 521-524
Author(s):  
A. F. Gorenkov ◽  
T. A. Lifanova
Keyword(s):  
Author(s):  
R. E. Erickson ◽  
R. M. Krajewski ◽  
W. E. Cohrs

This paper is directed to the modification of jet fuels to reduce the inherent fire hazard of such fuels. Some of the problems and compromises involved in this development program are discussed. The theoretical concept pursued is outlined and some of the physical properties of the final compromise modified fuel are shown.


Author(s):  
D.R. Mattie ◽  
J.W. Fisher

Jet fuels such as JP-4 can be introduced into the environment and come in contact with aquatic biota in several ways. Studies in this laboratory have demonstrated JP-4 toxicity to fish. Benzene is the major constituent of the water soluble fraction of JP-4. The normal surface morphology of bluegill olfactory lamellae was examined in conjunction with electrophysiology experiments. There was no information regarding the ultrastructural and physiological responses of the olfactory epithelium of bluegills to acute benzene exposure.The purpose of this investigation was to determine the effects of benzene on the surface morphology of the nasal rosettes of the bluegill sunfish (Lepomis macrochirus). Bluegills were exposed to a sublethal concentration of 7.7±0.2ppm (+S.E.M.) benzene for five, ten or fourteen days. Nasal rosettes were fixed in 2.5% glutaraldehyde and 2.0% paraformaldehyde in 0.1M cacodylate buffer (pH 7.4) containing 1.25mM calcium chloride. Specimens were processed for scanning electron microscopy.


Author(s):  
A.A. Poroshin ◽  
◽  
E.Yu. Udavtsova ◽  
E.V. Bobrinev ◽  
A.A. Kondashov ◽  
...  
Keyword(s):  

2020 ◽  
Vol 90 ◽  
pp. 19-31
Author(s):  
D. V. Zobkov ◽  
◽  
A. A. Poroshin ◽  
A. A. Kondashov ◽  
◽  
...  

Introduction. A mathematical model is presented for assigning protection objects to certain risk categories in the field of fire safety. The model is based on the concepts of the probability of adverse effects of fires causing harm (damage) of various extent and severity to the life or health of citizens, and the acceptable risk of harm (damage) from fires. Goals and objectives. The purpose of the study is to develop the procedure for assigning protection objects to a certain category of risk of harm (damage) based on estimates of the probability of fires with the corresponding severity consequences, to determine the acceptable level of risk of harm (damage) due to the fires, to calculate and develop numerical values of criteria for assigning objects of protection to the appropriate risk categories. Methods. The boundaries of the intervals corresponding to certain risk categories are determined by dividing the logarithmic scale of severity of adverse effects of fires into equal segments. Classification methods are used to assign objects of protection to a specific risk category. Results and discussion. Based on the level of severity of potential negative consequences of a fire, risk categories were determined for groups of protection objects that are homogeneous by type of economic activity and by functional fire hazard classes. The risk category for each individual object of protection is proposed to be determined using the so-called index of "identification of a controlled person" within a group of objects that are homogeneous by type of economic activity and class of functional fire hazard. Depending on the risk category, the periodicity of planned control and supervision measures in relation to the specific object of protection under consideration is determined, taking into account its socio-economic characteristics and the state of compliance with fire safety requirements by the controlled person. Conclusions. To develop criteria for classifying protection objects that are homogeneous in terms of economic activity and functional fire hazard classes, the probability of negative consequences of fires, that are causing harm (damage) of various extent and severity to the life or health of citizens, and the acceptable risk of causing harm (damage) as a result of fires, is used. The risk category for each individual object of protection is determined taking into account socio-economic characteristics of the object that affect the level of ensuring its fire safety, as well as the criteriaof integrity of the subordinate person that characterize the probability of non-compliance with mandatory fire safety requirements at the object of protection. Calculations are made and numerical values of criteria for assigning protection objects that are homogeneous in terms of economic activity and functional fire hazard classes to a certain category of risk are proposed. Key words: object of protection, probability of fire, acceptable level of risk, risk category, dangerous factor of fire, death and injury of people.


Sign in / Sign up

Export Citation Format

Share Document