Non-equilibrium segregation of boron at austenite grain boundaries

1991 ◽  
Vol 10 (20) ◽  
pp. 1232-1234 ◽  
Author(s):  
Shenhua Song ◽  
Zhexi Yuan ◽  
Tingdong Xu
1989 ◽  
Vol 23 (7) ◽  
pp. 1163-1167 ◽  
Author(s):  
G. Saindrenan ◽  
D. Roptin ◽  
J.M. Maufras ◽  
B. Bauche

1989 ◽  
Vol 159 ◽  
Author(s):  
Chu Youyi ◽  
Zhan Sanhong

ABSTRACTBased an the local equilibrium among vacancies, solute atans and vacancy-solute atom complexes, a mechanism for solute segregation to grain boundaries is suggested for a alloy system with binding energy of complex S≫kT. A set of dynamic equations for grain boundary segregation is ived, which can describe both equilibrium and nonequilibrium segregations, as the effect of the equilibrium segregation is taken into account in the bonndary condition. Theoretical calculation is made by computer for boron segregation at austenite grain boundaries as functions of isothermal holding time, cooling rate and quenching teaperature, which agree well with experimental results.


Author(s):  
D. B. Williams ◽  
A. D. Romig

The segregation of solute or imparity elements to grain boundaries can occur by three well-defined processes. The first is Gibbsian segregation in which an element of minimal matrix solubility confines itself to a monolayer at the grain boundary. Classical examples include Bi in Cu and S or P in Fe. The second process involves the depletion of excess matrix solute by volume diffusion to the boundary. In the boundary, the solute atoms diffuse rapidly to precipitates, causing them to grow by the ‘collector-plate mechanism.’ Such grain boundary diffusion is thought to initiate “Diffusion-Induced Grain Boundary Migration,” (DIGM). This process has been proposed as the origin of eutectoid transformations or discontinuous grain boundary reactions. The third segregation process is non-equilibrium segregation which result in a solute build-up around the boundary because of solute-vacancy interactions.All of these segregation phenomena usually occur on a sub-micron scale and are often affected by the nature of the grain boundary (misorientation, defect structure, boundary plane).


Author(s):  
Edward A Kenik

Segregation of solute atoms to grain boundaries, dislocations, and other extended defects can occur under thermal equilibrium or non-equilibrium conditions, such as quenching, irradiation, or precipitation. Generally, equilibrium segregation is narrow (near monolayer coverage at planar defects), whereas non-equilibrium segregation exhibits profiles of larger spatial extent, associated with diffusion of point defects or solute atoms. Analytical electron microscopy provides tools both to measure the segregation and to characterize the defect at which the segregation occurs. This is especially true of instruments that can achieve fine (<2 nm width), high current probes and as such, provide high spatial resolution analysis and characterization capability. Analysis was performed in a Philips EM400T/FEG operated in the scanning transmission mode with a probe diameter of <2 nm (FWTM). The instrument is equipped with EDAX 9100/70 energy dispersive X-ray spectrometry (EDXS) and Gatan 666 parallel detection electron energy loss spectrometry (PEELS) systems. A double-tilt, liquid-nitrogen-cooled specimen holder was employed for microanalysis in order to minimize contamination under the focussed spot.


2012 ◽  
Vol 60 (13-14) ◽  
pp. 5049-5055 ◽  
Author(s):  
Peter J. Felfer ◽  
Chris R. Killmore ◽  
Jim G. Williams ◽  
Kristin R. Carpenter ◽  
Simon P. Ringer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document