segregation process
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 26)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Aiman Mustaffa ◽  
Faiz Arith ◽  
Nurin Izzati Fauzi Peong ◽  
Nurul Rafiqah Jaffar ◽  
Evelyn Larwy Linggie ◽  
...  

Oil palm is an important industry that has contributed to income and support to the economic sector especially for Malaysia and Indonesia. However, most of the equipment in the oil palm industry is still operated manually. This work developed a system to separate bunches of oil palm fruit using color sensors according to maturity level. Fruit color plays a decisive point in determining fruit maturity. Here, a specific threshold point of red green blue (RGB) was obtained for the determination of the maturity level of oil palm fruit. Point values of < 120, 120 < x < 150 and > 150 represent the maturity levels of unripe, under ripe and ripe, respectively. This paper is the first to report the RGB points for use in the development of automated oil palm segregation system in the oil palm plantation industry. Thus, this paper will pave the way in producing an accurate and reliable oil palm separation system, which in turn has a positive effect in reducing human error. In the future, a set of sensors is proposed to detect a bunch of the oil palm fruits. This further can speed up the segregation process and more suitable for adaptation to the industry.


Author(s):  
David Virant ◽  
Ilijana Vojnovic ◽  
Jannik Winkelmeier ◽  
Marc Endesfelder ◽  
Bartosz Turkowyd ◽  
...  

AbstractThe key to ensuring proper chromosome segregation during mitosis is the kinetochore complex. This large and tightly regulated multi-protein complex links the centromeric chromatin to the microtubules attached to the spindle pole body and as such leads the segregation process. Understanding the architecture, function and regulation of this vital complex is therefore essential. However, due to its complexity and dynamics, only its individual subcomplexes could be studied in high-resolution structural detail so far.In this study we construct a nanometer-precise in situ map of the human-like regional kinetochore of Schizosaccharomyces pombe (S. pombe) using multi-color single-molecule localization microscopy (SMLM). We measure each kinetochore protein of interest (POI) in conjunction with two reference proteins, cnp1CENP-A at the centromere and sad1 at the spindle pole. This arrangement allows us to determine the cell cycle and in particularly the mitotic plane, and to visualize individual centromere regions separately. From these data, we determine protein distances within the complex using Bayesian inference, establish the stoichiometry of each POI for individual chromosomes and, consequently, build an in situ kinetochore model for S.pombe with so-far unprecedented precision. Being able to quantify the kinetochore proteins within the full in situ kinetochore structure, we provide valuable new insights in the S.pombe kinetochore architecture.


2021 ◽  
Vol 20 (1) ◽  
pp. 45-60
Author(s):  
Liane Okdinawati ◽  
Togar M. Simatupang ◽  
Arif Imran ◽  
Yuliani Dwi Lestari

Increasing consumer awareness to provide halal assurance in the supply chain process happens in Muslim countries and non-Muslim countries. Kosher products become a symbol for food safety, quality assurance, and lifestyle choice due to the strict requirements, thereby reducing the risk of contamination of the disease. This led to the increase of demands of halal logistics services to implement the halal concepts in logistics processes. One of the obstacles faced by the companies is a lack of understanding of how the halal concept is applied in accordance with the role of each company in the supply chain. This paper illustrates the value co-creation model using several supply chains for Fast-moving consumer goods (FMCG), cosmetics, fashion, and pharmaceuticals to provide value for customers and all parties that guarantee halal concepts throughout the activities of the supply chains. Business model and the adaptation in operational planning for a transportation company as halal logistics services are also developed in this paper by including segregation process, packaging, cleaning process, halal labeling, and halal documentation to ensure standard halal assurance are distinguished from activities in the general logistics process.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 631
Author(s):  
Andrey Kuznetsov ◽  
Lidia Karkina ◽  
Yuri Gornostyrev ◽  
Pavel Korzhavyi

The formation of Zn and Mg segregations at a tilt Σ5{013} <100> grain boundary (GB) in Al and the effects of these solutes on deformation behavior of polycrystalline Al were investigated using ab initio total energy calculations. Using a step-by-step modeling of the segregation process, we found that the formation of a thick segregation layer of Zn at the GB is energetically preferable, while the formation of an atomically thin segregation layer is expected in the case of Mg. To reveal the effect of segregation on the cohesive properties of Al GBs, we calculated the energy of cleavage decohesion and the shear resistance for GB sliding. We show that the segregation of Zn results in a substantial decrease in barriers for GB sliding, while the segregation of Mg increases the barriers. The results obtained allow us to explain experimental findings and demonstrate a strong relationship between chemical bonding of solute atoms, their segregation ability, and GB strength.


Author(s):  
Huihui Zhang ◽  
Ningli Zhao ◽  
Chao Qi ◽  
Xiaoge Huang ◽  
Greg Hirth

Shear deformation of a solid-fluid, two-phase material induces a fluid segregation process that produces fluid-enriched bands and fluid-depleted regions, and crystallographic preferred orientation (CPO) characterized by girdles of [100] and [001] axes sub-parallel to the shear plane and a cluster of [010] axes sub-normal to the shear plane, namely the AG-type fabric. Based on experiments of two-phase aggregates of olivine + basalt, a two-phase flow theory and a CPO-formation model were established to explain these microstructures. Here, we investigate the microstructure in a two-phase aggregate with supercritical CO2 as the fluid phase and examine the theory and model, as CO2 is different from basaltic melt in rheological properties. We conducted high‐temperature and high-pressure shear deformed experiments at 1 GPa and 1100&ordm;C in a Griggs-type apparatus on samples made of olivine + dolomite, which decomposed into carbonate melt and CO2 at experimental conditions. After deformation, CO2 segregation and an AG-type fabric occurred in these CO2-bearing samples, inconsistency with basaltic melt-bearing samples. The SPO-induce CPO model was used to explain the formation of the fabric. Our results suggest that the influences of CO2 as a fluid phase on the microstructure of a two-phase olivine aggregate is similar to that of basaltic melt and can be explained by the CPO-formation model for the solid-fluid system.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 448
Author(s):  
Jinpeng Qiao ◽  
Kejun Dong ◽  
Chenlong Duan

The segregation process of a single large intruder in a vibrated bed of small particles has been widely studied, but most previous studies focused on spherical intruders. In this work, the discrete element method was used to study the effects of vibration conditions and intruder shape on the dimensionless ascending velocity (va) of the intruder. The intruder was in a prolate shape with aspect ratio varied but its equivalent diameter fixed. Three equivalent diameters, namely volume-equivalent diameter, surface-area-equivalent diameter, and Sauter diameter, were used. It was found that va increases and then decreases with the rise of the dimensionless vibration amplitude (Ad) and the dimensionless vibration frequency (fd), and va increases with the decrease of the sphericity of the intruder (Φ). Moreover, the porosity variation in the vibrated bed and the granular temperature were analyzed, which can be linked to the change of va. It was further found that va can be uniformly correlated to Ad‧f 0.5 d, while the critical change of the response of va to Ad and fd occurs at Γ = 4.83, where Γ is the vibration intensity. Based on these findings, a piecewise equation was proposed to predict va as a function of Ad, fd, and Φ.


Author(s):  
Eugene Ostrovskiy ◽  
Yi-Lin Huang ◽  
Eric D. Wachsman

The presence of gas molecules alters the surface cation segregation process on perovskites.


2021 ◽  
Vol 249 ◽  
pp. 14006
Author(s):  
Dizhe Zhang ◽  
David Pinson ◽  
Zongyan Zhou

The vibration-induced segregation (e.g., rising of one large intruder - so called Brazil Nut Effect (BNE)) is studied by discrete element method. Vibration frequency and amplitude are two dominating factors in the occurrence of BNE and a phase diagram is constructed. For fixed vibration amplitude, segregation only occurs when vibration frequency is within a certain range. Larger vibration amplitude can expand the range of vibration frequency for BNE. Size ratio and the intruder shape are studied under certain vibration conditions. Larger size ratio can enlarge the segregation intensity. The shape of the intruder influences the segregation process by the intruder′s orientation. Standing-like initial orientation can increase the time required for the intruder to reach the top while lying-like initial orientation cannot significantly affect the vertical segregation.


2021 ◽  
Vol 249 ◽  
pp. 03047
Author(s):  
Zhixiong Zhang ◽  
Xihua Chu ◽  
Yanran Wang

Segregation of granular materials under vibration or flow conditions such as the Brazil nut effect has been well known, however, there is yet no consensus mechanisms to explain this phenomenon. This study attempts to investigate particle buoyant forces in the segregation process. To explain the difference of the segregation behavior for the large particle with different size, a modified calculation method of particle buoyant force is suggested for considering the effect of particle size ratio. A simple verification illustrates its validity.


Sign in / Sign up

Export Citation Format

Share Document