Determination of the concentration limits of flame propagation in oxyhydrogen mixtures on the initial pressure interval from 1 to 100 ATM ABS

1970 ◽  
Vol 6 (3) ◽  
pp. 354-355
Author(s):  
S. M. Kogarko ◽  
O. B. Ryabikov
2021 ◽  
pp. 92-97
Author(s):  
K.V. Korytchenko ◽  
I.S. Varshamova ◽  
D.V. Meshkov ◽  
D.P. Dubinin ◽  
R.I. Kovalenko ◽  
...  

A study of the influence of the discharge gap length and the initial gas pressure on the energy deposition into the discharge channel was done. The study was conducted at the same total discharge energy. It is experimentally shown that the connection of the voltage probe to the discharge circuit significantly affects the discharge current. The determination of the energy deposited into the spark channel is based on the results of numerical simulation of the spark channel development. Experimentally measured discharge currents at different pressures and the gap length were used as initial data for the calculation. Based on the obtained results, it is determined which of the factors (the initial pressure or the gap length) has the strongest influence on the energy input into the spark channel.


2008 ◽  
Vol 51 (6) ◽  
pp. 228-229
Author(s):  
N. I. Akinin ◽  
I. V. Babaitsev ◽  
N. N. Bulkhov ◽  
N. A. Smirnova

Author(s):  
Boris E. Gelfand ◽  
Mikhail V. Silnikov ◽  
Sergey P. Medvedev ◽  
Sergey V. Khomik

2018 ◽  
Vol 17 (2) ◽  
pp. 03
Author(s):  
L. Pizzuti ◽  
C. A. Martins ◽  
L. R. Santos

This paper presents a very detailed description of a new cylindrical constant volume combustion chamber designed for laminar burning velocity determination of gaseous mixtures at ambient temperature and initial pressure up to 6 bar. The experimental setup, the experimental procedure and the determination of the range of flame radius for laminar burning determination are all described in details. The laminar burning velocity of twelve synthetic biogas mixtures has been studied. Initial pressure varying between 1 and 5 bar, equivalence ratios, f, between 0.7 and 1.1 and percentage dilution, with a mixture of CO2 and N2, between 35 and 55% have been considered. Five experiments were run for each mixture providing a maximum percentage standard deviation of 8.11%. However, for two third of the mixtures this value is lower than 3.55%. A comparison with simulation using PREMIX for both GRI-Mech 3.0 and San Diego mechanisms has provided closer agreement for mixtures with equivalence ratio closer to stoichiometry whereas for f = 0.7 the deviation is larger than 15% for all pressures. Mixtures with lower equivalence ratio, higher dilution percentage and higher initial pressure presents the lower values of laminar burning velocity.


1996 ◽  
Vol 32 (5) ◽  
pp. 477-480 ◽  
Author(s):  
Yu. N. Shebeko ◽  
A. V. Trunev ◽  
S. G. Tsarichenko ◽  
A. A. Zaitsev

REAKTOR ◽  
2012 ◽  
Vol 14 (2) ◽  
pp. 109 ◽  
Author(s):  
Yuswan Muharam ◽  
Chandra Hadiwijaya ◽  
Jacquin Suryadi

One of the characteristics of gasoline fuel is anti-knock property represented by its octanenumber. The determination of octane numbers in Indonesia is by using cooperative fuel researchengines. The usage of cooperative fuel research engines in Indonesia has constraints, i.e. the limitednumber of the units and the old age. This study aims to obtain the octane numbers of commercialfuels by using kinetic models. The kinetics models of the oxidation and combustion of primaryreference fuel and multi component hydrocarbons are used to calculate the ignition delay times ofprimary reference fuel and commercial fuels, respectively. The ignition delay times of primaryreference fuel and commercial fuels are calculated at the same initial pressure and temperature, aswell as the same equivalence ratio. The octane number of a commercial fuel is known if its ignitiondelay time agrees with that of PFR possessing a certain volume percentage of isooctane. The modelgenerates the octane numbers of commercial fuels BB-A being 92.5, BB-B being 94.5, BB-C being89, BB-D being 90.5 and BB-E being 91.5 with the good agreement with those claimed by the fuelproducers. Salah satu karakteristik bahan bakar bensin adalah sifat anti ketukan yang dinyatakan dengan angkaoktana. Penentuan angka oktana di Indonesia menggunakan mesin CFR (cooperative fuel research).Pemakaian mesin CFR di Indonesia memiliki kendala, yaitu jumlah unit terbatas dan usia tua.Penelitian ini bertujuan mendapatkan angka oktana bahan bakar komersial dengan menggunakanmodel kinetika. Model kinetika oksidasi dan pembakaran bahan bakar rujukan utama dan modelhidrokarbon multikomponen yang telah divalidasi masing-masing digunakan untuk menghitungwaktu tunda ignisi bahan bakar rujukan utama dan bahan bakar komersial. Waktu tunda ignisibahan bakar rujukan utama dan bahan bakar komersial dihitung pada tekanan dan temperatur awal,serta rasio ekuivalensi yang sama. Angka oktana suatu bahan bakar komersial diketahui apabilawaktu tunda ignisinya cocok dengan waktu tunda ignisi bahan bakar rujukan utama yang memilikipersen volume isooktana tertentu. Model menghasilkan angka oktana bahan bakar komersial BB-Asebesar 92,5, BB-B 94,5, BB-C 89, BB-D 90,5 dan BB-E 91,5 yang memiliki ketepatan yang tinggiterhadap klaim produser bahan bakar komersial.


Sign in / Sign up

Export Citation Format

Share Document