constant volume combustion chamber
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 81)

H-INDEX

18
(FIVE YEARS 6)

Author(s):  
Nguyen Minh Tien Nguyen

This study presents the effect of ignition energy (Eig) on ignition delay time (tdelay) and uncertainty of laminar burning velocity (Su0) measurement of lean methane/air mixture in a constant volume combustion chamber. The mixture at an equivalence ratio of 0.6 is ignited using a pair of electrodes at the 2-mm spark gap. Eig is measured by integrating the product of voltage V(t) and current I(t) signals during a discharge period. The in-chamber pressure profiles are analyzed using the pressure-rise method to obtain tdelay and Su0. Su0 approximates 8.0 cm/s. Furthermore, the increasing Eig could shorten tdelay, leading to a faster combustion process. However, when Eig is greater than a critical value, called minimum reliable ignition energy (MRIE), the additional elevating Eig has the marginal effect on tdelay and Su0. The existence of MRIE supports to optimize the ignition systems and partly explains why extreme-high Eig>> MRIE has less contribution to engine performance.


2021 ◽  
pp. 1-9
Author(s):  
James Shaffer ◽  
Omid Askari ◽  
Saeid Zare

Abstract Previous methods of achieving ignition in the Plasma, Combustion and Fluid imaging (PCFi) Laboratory's Constant Volume Combustion Chamber (CVCC) utilizes either a standard or modified spark plug. The standard spark plug achieves a representation of side wall ignition (similar to a combustion engine) while modified spark plug has an extended electrode to allow for a center camber ignition used for laminar burning speed (LBS) measurements. The creation of the modified spark plug required welding a stainless-steel wire to the electrode of the plug. The creation of these electrodes is time consuming and requires a large quantity to effectively test a wide range of parameters such as gap size or electrode geometry. Two custom-design electrodes are presented in this paper which extend the experimental range of the PCFi's CVCC system. Electrode Design A, gives the ability to test thin wire electrode with adjustability of gap size and different diameters through use of a compression fitting. This electrode design (i.e., tip-to-tip) is utilized with a traditional style of automotive ignition system (i.e., capacitive discharge) to study ignition process (i.e., thermal plasma) and spherical flame propagation. Electrode Design B, adds the ability to change tip geometry (i.e., plate-to-plate, tip-to-plate, tip-to-sphere, plate-to-sphere, etc). In this paper the plate-to-plate configuration is demonstrated to study uniform low-temperature nanosecond plasma discharge. Both electrode designs reduce structural weakness by removing the welded joint and allow for linear gap size adjustment. The electrode utilizes high-temperature epoxy, ceramic and grafoil seals to make parameter adjustments easy and precise. The design was analyzed, prior to building and testing, based on the stress induced from the sealant, the total rated voltage, the rated temperature and the fracture stress of the ceramic material. The stress induced in the electrodes was analyzed with Finite Element Analysis (FEA) and the results were found to be within the limits of the material in terms of the compressive and fracture strengths. The maximum voltage was found to be around 30 kV. Design A is presented with 3 different electrode diameters of 1.3, 1 and 0.5 mm and Design B which utilizes a threaded connection for adjustable tip geometry. A sample of data, visual and electrical, is presented for the newly created electrode with a 0.5 mm diameter as well as combustion images for up to 10 atm of initial pressure for methane-air mixture. The new electrode design was able to survive several months of experimental use with few issues compared with the previous welded design.


2021 ◽  
Vol 7 ◽  
Author(s):  
Nick J. Killingsworth ◽  
Tuan M. Nguyen ◽  
Carter Brown ◽  
Goutham Kukkadapu ◽  
Julien Manin

We performed Computational Fluid Dynamics (CFD) simulations using a Reynolds-Averaged Navier-Stokes (RANS) turbulence model of high-pressure spray pyrolysis with a detailed chemical kinetic mechanism encompassing pyrolysis of n-dodecane and formation of polycyclic aromatic hydrocarbons. We compare the results using the detailed mechanism and those found using several different reduced chemical mechanisms to experiments carried out in an optically accessible, high-pressure, constant-volume combustion chamber. Three different soot models implemented in the CONVERGE CFD software are used: an empirical soot model, a method of moments, and a discrete sectional method. There is a large variation in the prediction of the soot between different combinations of chemical mechanisms and soot model. Furthermore, the amount of soot produced from all models is substantially less than experimental measurements. All of this indicates that there is still substantial work that needs to be done to arrive at simulations that can be relied on to accurately predict soot formation.


2021 ◽  
Vol 412 ◽  
pp. 131-140
Author(s):  
Munseok Choe ◽  
Yeongcheol Jeon ◽  
Dooseuk Choi

This study was conducted using the existing ignition device to verify the effectiveness of LFG, a renewable energy source. The experimental method used a constant volume combustion chamber to check the flame propagation process and combustion pressure. The experiment was carried out by changing the fuel composition ratio of LFG in the range of LFG70 to LFG40. From the result, it was found that the methane combustion occurred smoothly in LFG70 during the flame propagation process, and that combustion progressed gradually over time. In the LFG60 and LFG50 regions, which are fuels with a high CO2 ratio, it was confirmed that the combustion slowed down and the brightness of the light decreased at the same time. In LFG40 with 40% of CH4, a misfire phenomenon in which combustion does not occur was discovered. For combustion pressure, the CH4 chemical composition of the LFG was lowered, which led to the combustion delay and the reduction of combustion pressure


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6713
Author(s):  
Yangxun Liu ◽  
Weinan Liu ◽  
Huihong Liao ◽  
Wenhua Zhou ◽  
Cangsu Xu

Since both ethanol and acetone are the main components in many alternative fuels, research on the burning characteristics of ethanol-acetone blends is important to understand the combustion phenomena of these alternative fuels. In the present study, the burning characteristics of ethanol-acetone fuel blends are investigated at a temperature of 358 K and pressure of 0.1 MPa with equivalence ratios ranging from 0.7 to 1.4. Ethanol at 100% vol., 25% vol. ethanol/75% vol. acetone, 50% vol. ethanol/50% vol. acetone, 75% vol. ethanol/25% vol. acetone, and 100% vol. acetone are studied by the constant volume combustion chamber (CVCC) method. The results show that the laminar burning velocities of the fuel blends are between that of 100% vol. acetone and 100% vol. ethanol. As the ethanol content increases, the laminar burning velocities of the mixed fuels increase. Furthermore, a detailed chemical kinetic mechanism (AramcoMech 3.0) is used for simulating the burning characteristics of the mixtures. The directed relation graph (DRG), DRG with error propagation (DRGEP), sensitivity analysis (SA), and full species sensitivity analysis (FSSA) are used for mechanism reduction. The flame structure of the skeletal mechanism does not change significantly, and the concentration of each species remains basically the same value after the reaction. The numbers of reactions and species are reduced by 90% compared to the detailed mechanism. Sensitivity and reaction pathway analyses of the burning characteristics of the mixtures indicate that the reaction C2H2+H(+M)<=>C2H3(+M) is the key reaction.


2021 ◽  
Author(s):  
Vivek Subramaniam ◽  
Naveen Raj ◽  
Anand Karpatne ◽  
Douglas Breden ◽  
Laxminarayan Raja

Abstract In SI engines, the initial stages of flame kernel formation play an important role in determining the overall thermal efficiency and in reducing the cycle-to-cycle variability. Introducing a cross-flow within the spark gap has shown to reduce the combustion fluctuations by shortening this initial ignition period and activating a larger volume of the fuel-air mixture. This work presents a computational study of spark discharges in high cross-flow ignition environments using a high-fidelity, multi-physics equilibrium plasma solver. The numerical framework is designed to simultaneously model chemically reacting fluid flow coupled with electromagnetics, surface ablation physics and external circuit dynamics in a fully coupled manner. The spark channel is simulated in a constant volume combustion chamber under different operating conditions and cross flow velocities. The simulation model is validated by comparing several key parameters associated with the discharge such as the breakdown voltage, dwell current, restrike timing, and spark stretch against experimental measurements.


2021 ◽  
Author(s):  
Valentin Soloiu ◽  
Richard Smith ◽  
Amanda Weaver ◽  
Drake Grall ◽  
Cesar Carapia ◽  
...  

Abstract Research was conducted to observe the correlation of ignition delay, combustion delay, the negative temperature coefficient region (NTCR), and the low temperature heat release region (LTHR), in a constant volume combustion chamber (CVCC) in relation to blended amounts of iso-paraffinic kerosene (IPK) by mass with Jet-A and their derived cetane numbers (DCN). The study utilizes the ASTM standard D7668-14.a in a PAC CID 510 CVCC. The DCN was calculated using the ignition delay and combustion delay measured over 15 combustion events. The fuel blends investigated were 75%Jet-A blended with 25%IPK, 50%Jet-A with 50%IPK, 25%Jet-A with 75%IPK, neat Jet-A, and neat IPK. The ignition delay of neat Jet-A and IPK was found to be 3.26ms and 5.31ms, respectively, and the combustion delay of the fuels were 5.00ms and 17.17 ms, respectively. The ignition delay for 75Jet-A25IPK, 50Jet-A50IPK, 25Jet-A75IPK, fuel blends were found to be 3.5ms, 3.8ms, and 4.2ms, respectively. The combustion delay between the 75Jet-A25IPK, 50Jet-A50IPK, 25Jet-A75IPK, blends are 5.8ms, 7.0ms, and 9.4ms, respectively. The DCNs for 75Jet-A25IPK, 50Jet-A50IPK, 25Jet-A75IPK 43.1, 38.7, and 33.5, respectively. The DCN of the fuel blends compared to neat Jet-A was lower by 10.16% for 75Jet-A25IPK, 19.37% for 50Jet-A50IPK, 30.50% for 25Jet-A75IPK and 46.03% for neat IPK. Blends with larger amounts by mass of IPK resulted in extended ignition and combustion delays. It is concluded that the fuels that have larger amounts of IPK blended within them have extended NTC regions, LTHR regions, and decreased ringing intensity during combustion.


Sign in / Sign up

Export Citation Format

Share Document