Evaluation of hydrogen bonding ability of liquids and solids by C-13 NMR. Silica gel as a strong hydrogen bond donor

1995 ◽  
Vol 31 (4) ◽  
pp. 351-358 ◽  
Author(s):  
Dan Farcaşiu ◽  
Anca Ghenciu
2014 ◽  
Vol 20 (20) ◽  
pp. 5914-5925 ◽  
Author(s):  
Ute Wild ◽  
Christiane Neuhäuser ◽  
Sven Wiesner ◽  
Elisabeth Kaifer ◽  
Hubert Wadepohl ◽  
...  

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Christoph A. Bauer ◽  
Gisbert Schneider ◽  
Andreas H. Göller

Abstract We present machine learning (ML) models for hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD) strengths. Quantum chemical (QC) free energies in solution for 1:1 hydrogen-bonded complex formation to the reference molecules 4-fluorophenol and acetone serve as our target values. Our acceptor and donor databases are the largest on record with 4426 and 1036 data points, respectively. After scanning over radial atomic descriptors and ML methods, our final trained HBA and HBD ML models achieve RMSEs of 3.8 kJ mol−1 (acceptors), and 2.3 kJ mol−1 (donors) on experimental test sets, respectively. This performance is comparable with previous models that are trained on experimental hydrogen bonding free energies, indicating that molecular QC data can serve as substitute for experiment. The potential ramifications thereof could lead to a full replacement of wetlab chemistry for HBA/HBD strength determination by QC. As a possible chemical application of our ML models, we highlight our predicted HBA and HBD strengths as possible descriptors in two case studies on trends in intramolecular hydrogen bonding.


CrystEngComm ◽  
2020 ◽  
Vol 22 (37) ◽  
pp. 6152-6160
Author(s):  
Sandeep Kumar Dey ◽  
Archana ◽  
Sybil Pereira ◽  
Sarvesh S. Harmalkar ◽  
Shashank N. Mhaldar ◽  
...  

Intramolecular N–H⋯OC hydrogen bonding between the inner amide groups dictates the receptor–anion complementarity in a tripodal receptor towards selective encapsulation of hydrogenphosphate in the outer urea cavity by multiple hydrogen bonds.


2000 ◽  
Vol 55 (8) ◽  
pp. 738-752 ◽  
Author(s):  
Oliver Moers ◽  
Karna Wijaya ◽  
Ilona Lange ◽  
Armand Blaschette ◽  
Peter G. Jones

As an exercise in crystal engineering, low-temperature X-ray structures were determined for six rationally designed ionic solids of general formula BH+(MeSO2)2N−, where BH+ is 2-aminopyridinium (2, monoclinic, space group P21/c, Z = 4), 2-aminopyrimidinium (3, orthorhombic, Pbca, Z = 8), 2-aminothiazolium (4, orthorhombic, Pbcn, Z = 8), 2-amino-6-methylpyridinium (5, solvated with 0.5 H20, monoclinic, C2/c, Z = 8), 2-amino-1,3,4-thiadiazolium (6, triclinic, P1̄, Z = 2), or 2-amino-4,6-dimethylpyrimidinium (7, orthorhombic. Fdd2, Z = 16). The onium cations in question exhibit a trifunctional hydrogen-bond donor sequence H − N (H*)-C (sp2) − N − H , which is complementary to an O − S (sp3)−N fragment of the anion and simultaneously expected to form a third hydrogen bond via the exocyclic N − H* donor. Consequently, all the crystal packings contain cation-anion pairs assembled by an N − H ∙∙∙ N and an N −H ∙∙∙ O hydrogen bond, these substructures being mutually associated through an N − H* ∙∙∙ O bond. For the robust eight-membered ring synthon within the ion pairs [graph set N2 = R22(8), antidromic], two supramolecular isomers were observed: In 2 and 3, N − H ∙∙∙ N originates from the ring NH donor and N − H ∙∙∙ O from the exocyclic amino group, whereas in 4-7 these connectivities are reversed. The third hydrogen bond, N − H*∙∙∙ O , leads either to chains of ion pairs (generated by a 21 transformation in 2-4 or by a glide plane in 5) or to cyclic dimers of ion pairs (Ci symmetric in 6, C2-symmetric in 7). The overall variety of motifs observed in a small number of structures reflects the limits imposed on the prediction of hydrogen bonding patterns. Owing to the excess of potential acceptors over traditional hydrogen-bond donors, several of the structures display prominent non-classical secondary bonding. Thus, the cyclodimeric units of 6 are associated into strands through short antiparallel O ∙∙∙ S(cation) interactions. In the hemihydrate 5, two independent C-H(cation) ∙∙∙ O bonds generate a second antidromic R22(8) pattern, leading to sheets composed of N − H ∙∙∙ N/O connected catemers; the water molecules are alternately sandwiched between and O - H ∙∙∙ O bonded to the sheets to form bilayers, which are cross-linked by a third C − H (cation ) ∙∙∙ O contact. The roof-shaped cyclodimers occurring in 7 occupy the polar C2 axes parallel to z and build up hollow Car− H ∙∙∙ O bonded tetrahedral lattices; in order to fill their large empty cavities, five translationally equivalent lattices mutually interpenetrate.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 401 ◽  
Author(s):  
Franz Steppeler ◽  
Dominika Iwan ◽  
Elżbieta Wojaczyńska ◽  
Jacek Wojaczyński

For almost 20 years, thioureas have been experiencing a renaissance of interest with the emerged development of asymmetric organocatalysts. Due to their relatively high acidity and strong hydrogen bond donor capability, they differ significantly from ureas and offer, appropriately modified, great potential as organocatalysts, chelators, drug candidates, etc. The review focuses on the family of chiral thioureas, presenting an overview of the current state of knowledge on their synthesis and selected applications in stereoselective synthesis and drug development.


2010 ◽  
Vol 6 ◽  
pp. 869-875 ◽  
Author(s):  
Thomas Pinault ◽  
Bruno Andrioletti ◽  
Laurent Bouteiller

Supramolecular polymers are linear chains of low molar mass monomers held together by reversible and directional non-covalent interactions, which can form gels or highly viscous solutions if the self-assembled chains are sufficiently long and rigid. The viscosity of these solutions can be controlled by adding monofunctional compounds, which interact with the chain extremities: chain stoppers. We have synthesized new substituted ureas and thioureas and tested them as chain stoppers for a bis-urea based supramolecular polymer. In particular, the bis-thiourea analogue of the bis-urea monomer is shown not to form a supramolecular polymer, but a good chain stopper, because it is a strong hydrogen bond donor and a weak acceptor. Moreover, all substituted ureas tested reduce the viscosity of the supramolecular polymer solutions, but the best chain stopper is obtained when two hydrogen bond acceptors are placed in the same relative position as for the monomer and when no hydrogen bond donor is present.


Sign in / Sign up

Export Citation Format

Share Document