Electrodynamics in the general theory of relativity I. Null electromagnetic field

1969 ◽  
Vol 12 (10) ◽  
pp. 1300-1303
Author(s):  
I. M. Dozmorov

1950 ◽  
Vol 80 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Peter G. Bergmann ◽  
Robert Penfield ◽  
Ralph Schiller ◽  
Henry Zatzkis


1988 ◽  
Vol 155 (7) ◽  
pp. 517-527 ◽  
Author(s):  
Ya.B. Zel'dovich ◽  
Leonid P. Grishchuk




2019 ◽  
Author(s):  
Vitaly Kuyukov

Quantum tunneling of noncommutative geometry gives the definition of time in the form of holography, that is, in the form of a closed surface integral. Ultimately, the holography of time shows the dualism between quantum mechanics and the general theory of relativity.



Universe ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 37
Author(s):  
Lorenzo Iorio

Recently, the secular pericentre precession was analytically computed to the second post-Newtonian (2PN) order by the present author with the Gauss equations in terms of the osculating Keplerian orbital elements in order to obtain closer contact with the observations in astronomical and astrophysical scenarios of potential interest. A discrepancy in previous results from other authors was found. Moreover, some of such findings by the same authors were deemed as mutually inconsistent. In this paper, it is demonstrated that, in fact, some calculation errors plagued the most recent calculations by the present author. They are explicitly disclosed and corrected. As a result, all of the examined approaches mutually agree, yielding the same analytical expression for the total 2PN pericentre precession once the appropriate conversions from the adopted parameterisations are made. It is also shown that, in the future, it may become measurable, at least in principle, for some of the recently discovered short-period S-stars in Sgr A*, such as S62 and S4714.



Sign in / Sign up

Export Citation Format

Share Document