Measurement of gamma-radiation exposure dose rate with an instrument incorporating a silicon detector

1975 ◽  
Vol 18 (10) ◽  
pp. 1535-1536
Author(s):  
V. S. Gorev ◽  
V. A. Kozhemyakin ◽  
M. D. Firsov ◽  
V. A. Fomenko ◽  
A. L. Kholodkov ◽  
...  
2015 ◽  
Vol 11 (3) ◽  
pp. 1-9
Author(s):  
Ugochukwu Okoro ◽  
Ijeoma Dike ◽  
Chidiezie Chineke ◽  
Christiana Godwin ◽  
Chiamaka Chukwunyere

Author(s):  
Masahiko Matsuo ◽  
Yasuyuki Taira ◽  
Makiko Orita ◽  
Yumiko Yamada ◽  
Juichi Ide ◽  
...  

On 1 April 2017, six years have passed since the Fukushima Daiichi Nuclear Power Station (FDNPS) accident, and the Japanese government declared that some residents who lived in Tomioka Town, Fukushima Prefecture could return to their homes. We evaluated environmental contamination and radiation exposure dose rates due to artificial radionuclides in the livelihood zone of residents (living space such as housing sites), including a restricted area located within a 10-km radius from the FDNPS, immediately after residents had returned home in Tomioka town. In areas where the evacuation orders had been lifted, the median air dose rates were 0.20 μSv/h indoors and 0.26 μSv/h outdoors, and the radiation exposure dose rate was 1.6 mSv/y. By contrast, in the “difficult-to-return zone,” the median air dose rate was 2.3 μSv/h (20 mSv/y) outdoors. Moreover, the dose-forming artificial radionuclides (radiocesium) in the surface soil were 0.018 μSv/h (0.17 mSv/y) in the evacuation order-lifted areas and 0.73 μSv/h (6.4 mSv/y) in the difficult-to-return zone. These findings indicate that current concentrations of artificial radionuclides in soil samples have been decreasing in the evacuation order-lifted areas of Tomioka town; however, a significant external exposure risk still exists in the difficult-to-return zone. The case of Tomioka town is expected to be the first reconstruction model including the difficult-to-return zone.


2021 ◽  
Vol 1 (1) ◽  
pp. 41-46
Author(s):  
Martua Damanik ◽  
◽  
Josepa ND Simanjuntak ◽  
Elvita Rahmi Daulay

Cathlab radiation workers, when performing interventional procedures, are at high risk of the effects of radiation exposure. The risk of radiation exposure is deterministic and stochastic biological effects. Therefore, radiation exposure studies of radiation workers at the cath lab were conducted to determine the value of radiation exposure received. This radiation exposure study was conducted by measuring and recording radiation exposure doses received by radiation workers. Measurements are made when the radiation officer performs the intervention procedure. The research was carried out for one month in the cath lab room of the Adam Malik General Hospital, Medan. The modalities used are GE Medical System Interventional Fluoroscopy and Phillips Allura Xper FD20. The dosimeter used is “my dose mini”, which is placed inside a shield or apron worn by radiation workers. The size of the apron shield used is 0.50 mm Pb at the front and 0.25 mm Pb at the rear. Radiation officers whose radiation exposure dose was measured consisted of 10 doctors, 11 nurses, and one radiographer. Each inspection procedure of each radiation worker has a different distance, time, and shield from the radiation source. The measurement of radiation exposure dose is (1-59 μSv) for doctors, (1-58 μSv) for nurses, and 1 μSv for radiographers. To protect against radiation must pay attention to the factors of time, distance, and shielding. Ways that can do are to avoid being close to radiation sources for too long, keep a space at a safe level from radiation, and use shields such as Pb-coated aprons, use Pb gloves, Pb goggles, and thyroid protectors. The amount of radiation exposure dose received by each radiation worker at the time of measurement is still within the tolerance limit. The Nuclear Energy Regulatory Agency (BAPETEN) regulation, which the International Commission recommends on Radiological Protection (ICRP), is 20 mSv/year. The results of this study are expected to be used as input for improving the quality of service for monitoring radiation exposure doses in the Cathlab and as reference material for further research.


Sign in / Sign up

Export Citation Format

Share Document