Averaging the radiation transport equations in solving two-dimensional radiation-gasdynamic problems

1983 ◽  
Vol 45 (4) ◽  
pp. 1126-1134 ◽  
Author(s):  
A. P. Golub' ◽  
T. B. Malyavina ◽  
I. V. Nemchinov
2006 ◽  
Vol 128 (9) ◽  
pp. 945-952 ◽  
Author(s):  
Sandip Mazumder

Two different algorithms to accelerate ray tracing in surface-to-surface radiation Monte Carlo calculations are investigated. The first algorithm is the well-known binary spatial partitioning (BSP) algorithm, which recursively bisects the computational domain into a set of hierarchically linked boxes that are then made use of to narrow down the number of ray-surface intersection calculations. The second algorithm is the volume-by-volume advancement (VVA) algorithm. This algorithm is new and employs the volumetric mesh to advance the ray through the computational domain until a legitimate intersection point is found. The algorithms are tested for two classical problems, namely an open box, and a box in a box, in both two-dimensional (2D) and three-dimensional (3D) geometries with various mesh sizes. Both algorithms are found to result in orders of magnitude gains in computational efficiency over direct calculations that do not employ any acceleration strategy. For three-dimensional geometries, the VVA algorithm is found to be clearly superior to BSP, particularly for cases with obstructions within the computational domain. For two-dimensional geometries, the VVA algorithm is found to be superior to the BSP algorithm only when obstructions are present and are densely packed.


1998 ◽  
Vol 188 ◽  
pp. 374-375
Author(s):  
M. Fujita ◽  
T. Okuda

We investigate the accretion disks around compact objects with high mass accretion rates near the Eddington's critical value ME, where radiation pressure and electron scattering are dominant. This raises next problems: (a) whether stable disks could exist in relation to the theory of thermal instabilities of the disk and (b) what characteristic features the disks have if the stable disks exist. A non-rotating neutron star with the mass M = 1.4M⊙, radius R* = 107cm and the accretion rate Mac = 2.0 and 0.5Mac (models 1 and 2) is considered as the compact object. We assume the α-model for the viscosity and solve the set of two-dimensional time-dependent hydrodynamic equations coupled with radiation transport. The numerical method used is basically the same as one described by Kley and Hensler (1987) and Kley (1989) but we include some improvements in solving the difference equations (Okuda et al. 1997). The initial configuration consists of a cold, dense, and optically thick disk which is given by the standard α-model (Shakura and Sunyaev 1973) and a rarefied optically thin atmosphere around the disk.


Author(s):  
Pablo E. Araya Go´mez ◽  
Miles Greiner

A two-dimensional computational model of a spent 7×7 Boiling Water Reactor assembly in a horizontal support basket was developed using the Fluent computational fluid dynamics package. Heat transfer simulations were performed to predict the maximum cladding temperature for assembly heat generation rates between 100 and 600W, uniform basket wall temperatures of 25 and 400°C, and with helium and nitrogen backfill gases. Different sets of simulations modeled conduction/radiation and natural convection/radiation transport across the gas filled regions to assess the importance of different transport processes. Simulations that included natural convection exhibited measurably lower cladding temperatures than those that did not only for nitrogen, at the lower basket wall temperature, and within an intermediate range of heat generation rates. Outside these conditions and for helium, conduction and radiation transport are sufficiently large so that natural convection has no measurable effect. Finally, the maximum cladding temperature is more sensitive to the assumed value of the fuel cladding emissivities when nitrogen is the backfill gas than when helium is used.


Author(s):  
A. Sellitto ◽  
I. Carlomagno ◽  
D. Jou

Heat flow along two-dimensional strips as a function of the Knudsen number is examined in two different versions of heat-transport equations with non-local terms, with or without heat slip flow. In both of them, a parabolic heat profile corresponding to the Poiseuille phonon flow may appear in some domains of temperature, or of the Knudsen number, in the transition from the Fourier regime to the ballistic one. The influence of the slip heat flow on such a transition is discussed.


Sign in / Sign up

Export Citation Format

Share Document