Simulations of Heat Transfer Within the Fuel Assembly/Backfill Gas Region of Transport Packages

Author(s):  
Pablo E. Araya Go´mez ◽  
Miles Greiner

A two-dimensional computational model of a spent 7×7 Boiling Water Reactor assembly in a horizontal support basket was developed using the Fluent computational fluid dynamics package. Heat transfer simulations were performed to predict the maximum cladding temperature for assembly heat generation rates between 100 and 600W, uniform basket wall temperatures of 25 and 400°C, and with helium and nitrogen backfill gases. Different sets of simulations modeled conduction/radiation and natural convection/radiation transport across the gas filled regions to assess the importance of different transport processes. Simulations that included natural convection exhibited measurably lower cladding temperatures than those that did not only for nitrogen, at the lower basket wall temperature, and within an intermediate range of heat generation rates. Outside these conditions and for helium, conduction and radiation transport are sufficiently large so that natural convection has no measurable effect. Finally, the maximum cladding temperature is more sensitive to the assumed value of the fuel cladding emissivities when nitrogen is the backfill gas than when helium is used.

Author(s):  
Triton Manzo ◽  
Mustafa-Hadj Nacer ◽  
Miles Greiner

This paper presents preliminary results of heat transfer simulations performed in geometrically-accurate-three-dimensional model of nuclear fuel canister filled with helium. The numerical model represents a vertical canister, which relies on natural convection as its primary heat transfer mechanism, containing 24 PWR fuel assemblies. The model includes distinct regions for the fuel pellets, cladding and gas regions within each basket opening. Symmetry boundary conditions are employed so that only one-eighth of the package cross-section is included. The canister is assumed to be filled with helium at atmospheric pressure. A constant temperature of 101.7°C is employed on the canister outer surfaces, assuming the canister to be surrounded with water. These conditions of pressure and temperature were considered, in this paper, for comparison purpose with previous work. The effects of buoyancy-induced gas motion and natural convection, along with radiation and conduction through gas regions and solid are considered. Steady state simulations using ANSYS/Fluent were performed for different heat generation rates in the fuel regions. Simulations that include the effect of natural convection and others that do not include this effect are conducted. The peak cladding temperature and its radial and axial locations are reported. The maximum allowable heat generation that brings the cladding temperatures to the radial hydride formation limit (TRH=400°C) is also reported. The results of the three dimensional model simulations were compared to two dimensional model simulations for the same heat generation rate. The results showed that the two-dimensional simulations overestimate the temperature in the canister by almost 70°C.


Author(s):  
Pablo E. Araya Go´mez ◽  
Miles Greiner

Two-dimensional simulations of steady natural convection and radiation heat transfer for a 14×14 pressurized water reactor (PWR) spent nuclear fuel assembly within a square basket tube of a typical transport package were conducted using a commercial computational fluid dynamics package. The assembly is composed of 176 heat generating fuel rods and 5 larger guide tubes. The maximum cladding temperature was determined for a range of assembly heat generation rates and uniform basket wall temperatures, with both helium and nitrogen backfill gases. The results are compared with those from earlier simulations of a 7×7 boiling water reactor (BWR). Natural convection/radiation simulations exhibited measurably lower cladding temperatures only when nitrogen is the backfill gas and the wall temperature is below 100°C. The reduction in temperature is larger for the PWR assembly than it was for the BWR. For nitrogen backfill, a ten percent increase in the cladding emissivity (whose value is not well characterized) causes a 4.7% reduction in the maximum cladding to wall temperature difference in the PWR, compared to 4.3% in the BWR at a basket wall temperature of 400°C. Helium backfill exhibits reductions of 2.8% and 3.1% for PWR and BWR respectively. Simulations were performed in which each guide tube was replaced with four heat generating fuel rods, to give a homogeneous array. They show that the maximum cladding to wall temperature difference versus total heat generation within the assembly is not sensitive to this geometric variation.


Author(s):  
John R. Willard ◽  
D. Keith Hollingsworth

Confined bubbly flows in millimeter-scale channels produce significant heat transfer enhancement when compared to single-phase flows. Experimental studies support the hypothesis that the enhancement is driven by a convective phenomenon in the liquid phase as opposed to sourcing from microlayer evaporation or active nucleation. A numerical investigation of flow structure and heat transfer produced by a single bubble moving through a millimeter-scale channel was performed in order to document the details of this convective mechanism. The simulation includes thermal boundary conditions emulating those of the experiments, and phase change was omitted in order to focus only on the convective mechanism. The channel is horizontal with a uniform-heat-generation upper wall and an adiabatic lower surface. A Lagrangian framework was adopted such that the computational domain surrounds the bubble and moves at the nominal bubble speed. The liquid around the bubble moves as a low-Reynolds-number unsteady laminar flow. The volume-of-fluid method was used to track the liquid/gas interface. This paper reviews the central results of this simulation regarding wake heat transfer. It then compares the findings regarding Nusselt number enhancement to a reduced-order model on a two-dimensional domain in the wake of the bubble. The model solves the advective-diffusion equation assuming a velocity field consistent with fully developed channel flow in the absence of the bubble. The response of the uniform-heat-generation upper wall is included. The model assumes a temperature profile directly behind the bubble which represents a well-mixed region produced by the passage of the bubble. The significant wake heat transfer enhancement and its decay with distance from the bubble documented by the simulation were captured by the reduced-order model. However, the channel surface temperature recovered in a much shorter distance in the simulation compared to the reduced-order model. This difference is attributed to the omission of transverse conduction within the heated surface in the two-dimensional model. Beyond approximately one bubble diameter into the bubble wake, the complex flow structures are replaced by the momentum field of the precursor channel flow. However, the properties and thickness of the heated upper channel wall govern the heat transfer for many bubble diameters behind the bubble.


2018 ◽  
Vol 240 ◽  
pp. 01006 ◽  
Author(s):  
Nadezhda Bondareva ◽  
Mikhail Sheremet

Present study is devoted to numerical simulation of heat and mass transfer inside a cooper profile filled with paraffin enhanced with Al2O3 nanoparticles. This profile is heated by the heat-generating element of constant volumetric heat flux. Two-dimensional approximation of melting process is described by the Navier-Stokes equations in non-dimensional variables such as stream function, vorticity and temperature. The enthalpy formulation has been used for description of the heat transfer. The influence of volume fraction of nanoparticles and intensity of heat generation on melting process and natural convection in liquid phase has been studied.


Author(s):  
Kamyar Mansour

We consider the two-dimensional problem of steady natural convection in a circular cavity with periodic heat generation filled with viscous fluid subject to cosine temperature variation on the boundary. The solution is expanded for low Rayleigh number and extended to 16 terms by computer. Analysis of these expansions allows the exact computation for arbitrarily accuracy up to 50000 figures. Although the range of the radius of convergence is small but pade approximation leads our result to be good even for higher value of the similarity parameter.


Sign in / Sign up

Export Citation Format

Share Document