Functional properties ofEscherichia coli single-stranded DNA binding proteins in vivo

1987 ◽  
Vol 103 (3) ◽  
pp. 372-374
Author(s):  
O. A. Aizenberg ◽  
G. E. Fradkin
Author(s):  
Melanie A Sparks ◽  
Saurabh P Singh ◽  
Peter M Burgers ◽  
Roberto Galletto

Abstract G-quadruplexes (G4s) are stable secondary structures that can lead to the stalling of replication forks and cause genomic instability. Pif1 is a 5′ to 3′ helicase, localized to both the mitochondria and nucleus that can unwind G4s in vitro and prevent fork stalling at G4 forming sequences in vivo. Using in vitro primer extension assays, we show that both G4s and stable hairpins form barriers to nuclear and mitochondrial DNA polymerases δ and γ, respectively. However, while single-stranded DNA binding proteins (SSBs) readily promote replication through hairpins, SSBs are only effective in promoting replication through weak G4s. Using a series of G4s with increasing stabilities, we reveal a threshold above which G4 through-replication is inhibited even with SSBs present, and Pif1 helicase is required. Because Pif1 moves along the template strand with a 5′-3′-directionality, head-on collisions between Pif1 and polymerase δ or γ result in the stimulation of their 3′-exonuclease activity. Both nuclear RPA and mitochondrial SSB play a protective role during DNA replication by preventing excessive DNA degradation caused by the helicase-polymerase conflict.


2001 ◽  
Vol 382 (2) ◽  
Author(s):  
L'ubomír Tomáka ◽  
Jozef Nosek ◽  
Blanka Kucejová

1991 ◽  
Vol 11 (4) ◽  
pp. 1944-1953
Author(s):  
I M Santoro ◽  
T M Yi ◽  
K Walsh

A sequence-specific DNA-binding protein from skeletal-muscle extracts that binds to probes of three muscle gene DNA elements is identified. This protein, referred to as muscle factor 3, forms the predominant nucleoprotein complex with the MCAT gene sequence motif in an electrophoretic mobility shift assay. This protein also binds to the skeletal actin muscle regulatory element, which contains the conserved CArG motif, and to a creatine kinase enhancer probe, which contains the E-box motif, a MyoD-binding site. Muscle factor 3 has a potent sequence-specific, single-stranded-DNA-binding activity. The specificity of this interaction was demonstrated by sequence-specific competition and by mutations that diminished or eliminated detectable complex formation. MyoD, a myogenic determination factor that is distinct from muscle factor 3, also bound to single-stranded-DNA probes in a sequence-specific manner, but other transcription factors did not. Multiple copies of the MCAT motif activated the expression of a heterologous promoter, and a mutation that eliminated expression was correlated with diminished factor binding. Muscle factor 3 and MyoD may be members of a class of DNA-binding proteins that modulate gene expression by their abilities to recognize DNA with unusual secondary structure in addition to specific sequence.


1991 ◽  
Vol 11 (4) ◽  
pp. 1944-1953 ◽  
Author(s):  
I M Santoro ◽  
T M Yi ◽  
K Walsh

A sequence-specific DNA-binding protein from skeletal-muscle extracts that binds to probes of three muscle gene DNA elements is identified. This protein, referred to as muscle factor 3, forms the predominant nucleoprotein complex with the MCAT gene sequence motif in an electrophoretic mobility shift assay. This protein also binds to the skeletal actin muscle regulatory element, which contains the conserved CArG motif, and to a creatine kinase enhancer probe, which contains the E-box motif, a MyoD-binding site. Muscle factor 3 has a potent sequence-specific, single-stranded-DNA-binding activity. The specificity of this interaction was demonstrated by sequence-specific competition and by mutations that diminished or eliminated detectable complex formation. MyoD, a myogenic determination factor that is distinct from muscle factor 3, also bound to single-stranded-DNA probes in a sequence-specific manner, but other transcription factors did not. Multiple copies of the MCAT motif activated the expression of a heterologous promoter, and a mutation that eliminated expression was correlated with diminished factor binding. Muscle factor 3 and MyoD may be members of a class of DNA-binding proteins that modulate gene expression by their abilities to recognize DNA with unusual secondary structure in addition to specific sequence.


2018 ◽  
Author(s):  
Qian Guo ◽  
Xianglu Liao ◽  
Xingwu Wang ◽  
Ling Liu ◽  
Bao Song

AbstractGenomic instability can cause a wide range of diseases, including cancer and cellular senescence, which is also a major challenge in stem cell therapy. However, how a single event can cause extremely high levels of genomic instability remains unclear. Using our developed method, cell in situ electrophoresis (CISE), and models of normal, cancer, and embryonic stem cells, we found that cell rounding as a catastrophic source event ubiquitously observed in vivo and in vitro might lead to large-scale DNA deprotection, genomic instability, chromosomal shattering, cell heterogeneity, and senescent crisis by dissociation of single-stranded DNA-binding proteins (SSBs). Understanding the mechanism may facilitate the development of clinical strategies for cancer therapy, improve the safety of stem cell therapy, and prevent pathological aging.


Sign in / Sign up

Export Citation Format

Share Document