fork stalling
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 74)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Léa Marie ◽  
Lorraine S. Symington

AbstractReplication stress and abundant repetitive sequences have emerged as primary conditions underlying genomic instability in eukaryotes. To gain insight into the mechanism of recombination between repeated sequences in the context of replication stress, we used a prokaryotic Tus/Ter barrier designed to induce transient replication fork stalling near inverted repeats in the budding yeast genome. Our study reveals that the replication fork block stimulates a unique recombination pathway dependent on Rad51 strand invasion and Rad52-Rad59 strand annealing activities, Mph1/Rad5 fork remodelers, Mre11/Exo1/Dna2 resection machineries, Rad1-Rad10 nuclease and DNA polymerase δ. Furthermore, we show recombination at stalled replication forks is limited by the Srs2 helicase and Mus81-Mms4/Yen1 nucleases. Physical analysis of the replication-associated recombinants revealed that half are associated with an inversion of sequence between the repeats. Based on our extensive genetic characterization, we propose a model for recombination of closely linked repeats that can robustly generate chromosome rearrangements.


2021 ◽  
Author(s):  
Wezley C. Griffin ◽  
David R. McKinzey ◽  
Kathleen N. Klinzing ◽  
Rithvik Baratam ◽  
Michael A. Trakselis

AbstractThe minichromosome maintenance (MCM) 8/9 helicase is a AAA+ complex involved in DNA replication-associated repair. Despite high sequence homology to the MCM2-7 helicase, an active role for MCM8/9 has remained elusive. We interrogated fork progression in cells lacking MCM8 or 9 and find there is a functional partitioning. Loss of MCM8 or 9 slows overall replication speed and increases markers of genomic damage and fork instability, further compounded upon treatment with hydroxyurea. MCM8/9 acts upstream and antagonizes the recruitment of BRCA1 in nontreated conditions. However, upon treatment with fork stalling agents, MCM9 recruits Rad51 to protect and remodel persistently stalled forks. The helicase function of MCM8/9 aids in normal replication fork progression, but upon excessive stalling, MCM8/9 directs additional stabilizers to protect forks from degradation. This evidence defines novel multifunctional roles for MCM8/9 in promoting normal replication fork progression and promoting genome integrity following stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nathan Ellis ◽  
Jianmei Zhu ◽  
Mary K Yagle ◽  
Wei-Chih Yang ◽  
Jing Huang ◽  
...  

Sumoylation is an important enhancer of responses to DNA replication stress and the SUMO-targeted ubiquitin E3 ligase RNF4 regulates these responses by ubiquitylation of sumoylated DNA damage response factors. The specific targets and functional consequences of RNF4 regulation in response to replication stress, however, have not been fully characterized. Here we demonstrated that RNF4 is required for the restart of DNA replication following prolonged hydroxyurea (HU)-induced replication stress. Contrary to its role in repair of γ-irradiation-induced DNA double-strand breaks (DSBs), our analysis revealed that RNF4 does not significantly impact recognition or repair of replication stress-associated DSBs. Rather, using DNA fiber assays, we found that the firing of new DNA replication origins, which is required for replication restart following prolonged stress, was inhibited in cells depleted of RNF4. We also provided evidence that RNF4 recognizes and ubiquitylates sumoylated Bloom syndrome DNA helicase BLM and thereby promotes its proteosome-mediated turnover at damaged DNA replication forks. Consistent with it being a functionally important RNF4 substrate, co-depletion of BLM rescued defects in the firing of new replication origins observed in cells depleted of RNF4 alone. We concluded that RNF4 acts to remove sumoylated BLM from collapsed DNA replication forks, which is required to facilitate normal resumption of DNA synthesis after prolonged replication fork stalling and collapse.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Arindam Datta ◽  
Kajal Biswas ◽  
Joshua A. Sommers ◽  
Haley Thompson ◽  
Sanket Awate ◽  
...  

AbstractThe tumor suppressor BRCA2 protects stalled forks from degradation to maintain genome stability. However, the molecular mechanism(s) whereby unprotected forks are stabilized remains to be fully characterized. Here, we demonstrate that WRN helicase ensures efficient restart and limits excessive degradation of stalled forks in BRCA2-deficient cancer cells. In vitro, WRN ATPase/helicase catalyzes fork restoration and curtails MRE11 nuclease activity on regressed forks. We show that WRN helicase inhibitor traps WRN on chromatin leading to rapid fork stalling and nucleolytic degradation of unprotected forks by MRE11, resulting in MUS81-dependent double-strand breaks, elevated non-homologous end-joining and chromosomal instability. WRN helicase inhibition reduces viability of BRCA2-deficient cells and potentiates cytotoxicity of a poly (ADP)ribose polymerase (PARP) inhibitor. Furthermore, BRCA2-deficient xenograft tumors in mice exhibited increased DNA damage and growth inhibition when treated with WRN helicase inhibitor. This work provides mechanistic insight into stalled fork stabilization by WRN helicase when BRCA2 is deficient.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai-Hang Lei ◽  
Han-Lin Yang ◽  
Hao-Yen Chang ◽  
Hsin-Yi Yeh ◽  
Dinh Duc Nguyen ◽  
...  

AbstractReplication stress causes replication fork stalling, resulting in an accumulation of single-stranded DNA (ssDNA). Replication protein A (RPA) and CTC1-STN1-TEN1 (CST) complex bind ssDNA and are found at stalled forks, where they regulate RAD51 recruitment and foci formation in vivo. Here, we investigate crosstalk between RPA, CST, and RAD51. We show that CST and RPA localize in close proximity in cells. Although CST stably binds to ssDNA with a high affinity at low ionic strength, the interaction becomes more dynamic and enables facilitated dissociation at high ionic strength. CST can coexist with RPA on the same ssDNA and target RAD51 to RPA-coated ssDNA. Notably, whereas RPA-coated ssDNA inhibits RAD51 activity, RAD51 can assemble a functional filament and exhibit strand-exchange activity on CST-coated ssDNA at high ionic strength. Our findings provide mechanistic insights into how CST targets and tethers RAD51 to RPA-coated ssDNA in response to replication stress.


2021 ◽  
Author(s):  
Qianqian Sun ◽  
Kun Liu ◽  
Fangzhou Li ◽  
Bingquan Qiu ◽  
Zhisong Fu ◽  
...  

Abstract BackgroundThe disassembly of the replisome plays an essential role in maintaining genome stability at the termination of DNA replication. However, the mechanism of replisome disassembly remains unknown in human. In this study, we screened E3 ligases and deubiquitinases (DUBs) for the ubiquitination of minichromosome maintenance protein (MCM) 7 and provided evidence of this process driving CMG helicase disassembly in human tumor cells. MethodsSILAC-MS/MS was analyzed to identify ubiquitinated proteins in HeLa cells. The ubiquitination/deubiquitylation assay in vitro and in vivo were detected by Western blot. Thymidine and HU were implied to synchronized cell cycle,and detect the role of ubiquitinated MCM7 in cell cycle. Cell fractionation assay was used to detect the function of ubiquitination of MCM7 in chromatin and non-chromatin. Aphidicolin、Etoposide、ICRF-193 and IR were applied to cause replication fork stalling. MG-132 and NMS-873 were used to inhibit the proteasome degradation and p97 segregase. Flow cytometer and FlowJo flow cytometry software were used to cell cycle analysis.ResultsIn our study, we found that the ubiquitin ligase RNF8 catalyzes the k63-linked poly-ubiquitination of MCM7 both in vivo and in vitro, and lysine 145 of MCM7 is the primary ubiquitination site. Moreover, the poly-ubiquitination of MCM7 mainly exists in the chromatin, which is dynamically regulated by the cell cycle, mainly occurs in the late S phase. And DNA damage can significantly reduce the poly-ubiquitylation of MCM7 in the late S phage. Furthermore, the proteasome, p97 segregase, USP29 and ATXN3 are required for the removal of MCM7 ubiquitination to promote the disassembly of CMG on chromatin. ConclusionsIn the late S phage of cell cycle, RNF8 catalyzes the poly-ubiquitination of MCM7, and then initiates the disassembly of CMG helicase from chromatin, which is mediated by p97, proteasome, USP29 and ATXN3 in human. We reveal the novel function of the poly-ubiquitylation of MCM7, which is a regulatory signal to control CMG complex unloading at replication termination sites.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. e1009863
Author(s):  
Michaela A. Gold ◽  
Jenna M. Whalen ◽  
Karine Freon ◽  
Zixin Hong ◽  
Ismail Iraqui ◽  
...  

Disease-associated trinucleotide repeats form secondary DNA structures that interfere with replication and repair. Replication has been implicated as a mechanism that can cause repeat expansions and contractions. However, because structure-forming repeats are also replication barriers, it has been unclear whether the instability occurs due to slippage during normal replication progression through the repeat, slippage or misalignment at a replication stall caused by the repeat, or during subsequent replication of the repeat by a restarted fork that has altered properties. In this study, we have specifically addressed the fidelity of a restarted fork as it replicates through a CAG/CTG repeat tract and its effect on repeat instability. To do this, we used a well-characterized site-specific replication fork barrier (RFB) system in fission yeast that creates an inducible and highly efficient stall that is known to restart by recombination-dependent replication (RDR), in combination with long CAG repeat tracts inserted at various distances and orientations with respect to the RFB. We find that replication by the restarted fork exhibits low fidelity through repeat sequences placed 2–7 kb from the RFB, exhibiting elevated levels of Rad52- and Rad8ScRad5/HsHLTF-dependent instability. CAG expansions and contractions are not elevated to the same degree when the tract is just in front or behind the barrier, suggesting that the long-traveling Polδ-Polδ restarted fork, rather than fork reversal or initial D-loop synthesis through the repeat during stalling and restart, is the greatest source of repeat instability. The switch in replication direction that occurs due to replication from a converging fork while the stalled fork is held at the barrier is also a significant contributor to the repeat instability profile. Our results shed light on a long-standing question of how fork stalling and RDR contribute to expansions and contractions of structure-forming trinucleotide repeats, and reveal that tolerance to replication stress by fork restart comes at the cost of increased instability of repetitive sequences.


2021 ◽  
Author(s):  
Sabrina X. Van Ravenstein ◽  
Kavi P. Mehta ◽  
Tamar Kavlashvili ◽  
Jo Ann Byl ◽  
Runxiang Zhao ◽  
...  

AbstractTopoisomerase II (Top2) unlinks chromosomes during vertebrate DNA replication. Top2 ‘poisons’ are widely-used chemotherapeutics that stabilize Top2 complexes on DNA, leading to cytotoxic DNA breaks. However, it is unclear how these drugs affect DNA replication, which is a major target of Top2 poisons. Using Xenopus egg extracts, we show that the Top2 poisons etoposide and doxorubicin both inhibit DNA replication through different mechanisms. Etoposide induces Top2-dependent DNA breaks and induces Top2-dependent fork stalling by trapping Top2 behind replication forks. In contrast, doxorubicin does not lead to appreciable break formation and instead intercalates into parental DNA to inhibit replication fork progression. In human cells, etoposide stalls replication forks in a Top2-dependent manner, while doxorubicin stalls forks independently of Top2. However, both drugs exhibit Top2-dependent cytotoxicity. Thus, despite shared genetic requirements for cytotoxicity etoposide and doxorubicin inhibit DNA replication through distinct mechanisms.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Yitian Guo ◽  
Melanie Rall-Scharpf ◽  
Jean-Christophe Bourdon ◽  
Lisa Wiesmüller ◽  
Stephanie Biber

AbstractThe recently discovered p53-dependent DNA damage tolerance (DDT) pathway relies on its biochemical activities in DNA-binding, oligomerization, as well as complex formation with the translesion synthesis (TLS) polymerase iota (POLι). These p53-POLι complexes slow down nascent DNA synthesis for safe, homology-directed bypass of DNA replication barriers. In this study, we demonstrate that the alternative p53-isoforms p53β, p53γ, Δ40p53α, Δ133p53α, and Δ160p53α differentially affect this p53-POLι-dependent DDT pathway originally described for canonical p53α. We show that the C-terminal isoforms p53β and p53γ, comprising a truncated oligomerization domain (OD), bind PCNA. Conversely, N-terminally truncated isoforms have a reduced capacity to engage in this interaction. Regardless of the specific loss of biochemical activities required for this DDT pathway, all alternative isoforms were impaired in promoting POLι recruitment to PCNA in the chromatin and in decelerating DNA replication under conditions of enforced replication stress after Mitomycin C (MMC) treatment. Consistent with this, all alternative p53-isoforms no longer stimulated recombination, i.e., bypass of endogenous replication barriers. Different from the other isoforms, Δ133p53α and Δ160p53α caused a severe DNA replication problem, namely fork stalling even in untreated cells. Co-expression of each alternative p53-isoform together with p53α exacerbated the DDT pathway defects, unveiling impaired POLι recruitment and replication deceleration already under unperturbed conditions. Such an inhibitory effect on p53α was particularly pronounced in cells co-expressing Δ133p53α or Δ160p53α. Notably, this effect became evident after the expression of the isoforms in tumor cells, as well as after the knockdown of endogenous isoforms in human hematopoietic stem and progenitor cells. In summary, mimicking the situation found to be associated with many cancer types and stem cells, i.e., co-expression of alternative p53-isoforms with p53α, carved out interference with p53α functions in the p53-POLι-dependent DDT pathway.


2021 ◽  
Vol 49 (18) ◽  
pp. 10493-10506
Author(s):  
Liton Kumar Saha ◽  
Yasuhisa Murai ◽  
Sourav Saha ◽  
Ukhyun Jo ◽  
Masataka Tsuda ◽  
...  

Abstract The antitumor activity of poly(ADP-ribose) polymerase inhibitors (PARPis) has been ascribed to PARP trapping, which consists in tight DNA–protein complexes. Here we demonstrate that the cytotoxicity of talazoparib and olaparib results from DNA replication. To elucidate the repair of PARP1–DNA complexes associated with replication in human TK6 and chicken DT40 lymphoblastoid cells, we explored the role of Spartan (SPRTN), a metalloprotease associated with DNA replication, which removes proteins forming DPCs. We find that SPRTN-deficient cells are hypersensitive to talazoparib and olaparib, but not to veliparib, a weak PARP trapper. SPRTN-deficient cells exhibit delayed clearance of trapped PARP1 and increased replication fork stalling upon talazoparib and olaparib treatment. We also show that SPRTN interacts with PARP1 and forms nuclear foci that colocalize with the replicative cell division cycle 45 protein (CDC45) in response to talazoparib. Additionally, SPRTN is deubiquitinated and epistatic with translesion synthesis (TLS) in response to talazoparib. Our results demonstrate that SPRTN is recruited to trapped PARP1 in S-phase to assist in the excision and replication bypass of PARP1–DNA complexes.


Sign in / Sign up

Export Citation Format

Share Document