Experimental method of determining the stress-strain state of bodies on the basis of the absorption of light

1995 ◽  
Vol 31 (5) ◽  
pp. 399-405
Author(s):  
A. V. Myl'nikov ◽  
Yu. A. Rudyak
Author(s):  
D. V. Kudelin ◽  
T. N. Nesiolovskaya

The competitiveness of rubber membranes determined by their durability, quality, reliability, including the time required to create. During operation, the membranes undergo complex deformations, as a result of which a large number of potential destruction zones of a different nature arise, which can lead to the failure of the product. The standard test methods used in the development of formulations for membranes involve testing the material under uniaxial tension conditions in most cases and do not take into account the actual loading conditions of the product during operation, which significantly increases the development time of new formulations for membranes. The paper presents and applies in practice a computational and experimental method of analysis the complexly stressed state of rubber membranes, including carrying out simple laboratory tests in a heterogeneous complexly stressed state, which is realized during the operation of rubber membranes, and analyzing the stress-strain state by the finite element method. An inhomogeneous complexly stressed state was realized by forcing the rubber membrane with a spherical indenter. The application of a computational-experimental method for analyzing the complexly stressed state of rubber membranes is considered on the example of a rubber corrugated membrane of an automatic valve of a bag filter purge system. An assessment of the physical and mechanical properties of rubbers in a heterogeneous complexly stressed state was carried out, as well as an analysis of the stress-strain state of the membrane when it was loaded with a spherical indenter, which made it possible to identify the most dangerous zones of the section. The complex use of this method made it possible to improve the resource of this corrugated membrane by thirty five percent in comparison with the standard, while reducing the creation time.


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


Sign in / Sign up

Export Citation Format

Share Document