bag filter
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 49)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 354 ◽  
pp. 00006
Author(s):  
Marius Kovacs ◽  
Lorand Toth ◽  
Sorin Simion

Most of combustible dusts present both fire and explosion hazard. Explosion may occur at certain concentrations of dust mixed with air and in the presence of an ignition source. The threat posed by this real danger was confirmed by the events that took place in economic units such as: feed factories, wood products, textile industry, steel, etc. Among the parameters of explosiveness of combustible dust, which can cause an explosion, we mention: maximum explosion pressure, lower explosion limit, explosive index, minimum ignition energy, electrical resistivity of dust, minimum ignition temperature of dust layer and cloud, particle size and concentration of dust in suspension. The current paper presents the results of determinations of combustible wood dust concentrations, performed at an important economic unit, manufacturing veneer and wood panels, at a dusting ventilation installation composed of fan, cyclone and textile filter. These determinations were made in the pipe connecting the fan and the bag filter, to assess possible danger of explosion in the pipe, by relating the measured concentration to the lower explosion limit (concentration of wood dust).


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1636
Author(s):  
Yanju Li ◽  
Pengchang Chai ◽  
Yu Wang ◽  
Zelin Cheng

Air filters for general ventilation have mainly been used to control the concentration of indoor particulate matter. In this study, the pressure differential, test dust capacity, quality factor and operating life of class F8 pleat–plate and multi-bag type chemical fiber filters were evaluated using an air filter performance test system. The results showed that the resistance increase rate of multi-bag filter (0.49 Pa/g·(cm/s)) was lower than that of pleat–plate filter (1.94 Pa/g·(cm/s)), the quality factor of the multi-bag filter was lower than that of pleat–plate filter, and the dust capacity of the multi-bag filter was much higher than that of the pleat–plate filter. The operating life of the multi-bag filter was 8 times as that of the pleat–plate filter with the measured PM2.5 of outdoor. The energy consumption of the pleat–plate filter was 2.2 times that of the multi-bag filter. Analyzing the electron microscope photos after dust loading, the dust depth of pleat–plate filter into filter material was thinner than that of multi-bag filter. The research results could provide data support for the design optimization and selection of ventilation filters and the treatment of the particulate matter in indoor environments.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 868
Author(s):  
Eric Fung ◽  
Ken I. Johnson ◽  
Wenqi Li ◽  
William Borges ◽  
Kai Chi ◽  
...  

In this study, granulated activated charcoal (GAC) and bio charcoal (BC) is used as a filler in P3 biosand bag filter to study their filtration performance against a range of fluoride impurities from 1–1400 mg/L. A set of experiments are done to analyze the filtration efficiency of the sandbag filter against fluoride impurities after incorporating different amounts (e.g., 0.2, 2 kg) and a combination of GAC and BC. A combination of filler GAC and BC (1 kg each) have exhibited excellent results with 100% fluoride removal efficiency against 5 mg/L fluoride impurities for an entire experimental time of 165 min. It is because of the synergetic effect of adsorption caused by the high surface area (739 m2/g) of GAC and hydroxyapatite groups in BC. The data from remediation experiments using individual GAC and BC are fitted into the Langmuir and Freundlich Isotherm Models to check their adsorption mechanism and determine GAC and BC’s maximum adsorption capacity (Qm). The remediation data for both GAC and BC have shown the better fitting to the Langmuir Isotherm Model with a high R2 value of 0.994 and 0.970, respectively, showing the excellent conformity with monolayer adsorption. While the GAC and BC have presented negative Kf values of −1.08 and −0.72, respectively, for Freundlich Model, showing the non-conformity to multilayer adsorption. The Qm values obtained from Langmuir Model for GAC is 6.23 mg/g, and for BC, it is 9.13 mg/g. The pH study on adsorption efficiency of individual GAC and BC against 5 mg/L of fluoride impurities indicates the decrease in removal efficiency with an increase in pH from 3 to 9. For example, BC has shown removal efficiency of 99.8% at pH 3 and 99.5% at pH 9, while GAC has exhibited removal efficiency of 96.1% at pH 3 and 95.9% at pH 9. Importantly, this study presents the significance of the synergetic application of GAC and BC in the filters, where GAC and BC are different in their origin, functionalities, and surface characteristics.


Author(s):  
D. V. Kudelin ◽  
T. N. Nesiolovskaya

The competitiveness of rubber membranes determined by their durability, quality, reliability, including the time required to create. During operation, the membranes undergo complex deformations, as a result of which a large number of potential destruction zones of a different nature arise, which can lead to the failure of the product. The standard test methods used in the development of formulations for membranes involve testing the material under uniaxial tension conditions in most cases and do not take into account the actual loading conditions of the product during operation, which significantly increases the development time of new formulations for membranes. The paper presents and applies in practice a computational and experimental method of analysis the complexly stressed state of rubber membranes, including carrying out simple laboratory tests in a heterogeneous complexly stressed state, which is realized during the operation of rubber membranes, and analyzing the stress-strain state by the finite element method. An inhomogeneous complexly stressed state was realized by forcing the rubber membrane with a spherical indenter. The application of a computational-experimental method for analyzing the complexly stressed state of rubber membranes is considered on the example of a rubber corrugated membrane of an automatic valve of a bag filter purge system. An assessment of the physical and mechanical properties of rubbers in a heterogeneous complexly stressed state was carried out, as well as an analysis of the stress-strain state of the membrane when it was loaded with a spherical indenter, which made it possible to identify the most dangerous zones of the section. The complex use of this method made it possible to improve the resource of this corrugated membrane by thirty five percent in comparison with the standard, while reducing the creation time.


2021 ◽  
Vol 21 (8) ◽  
pp. 4537-4543
Author(s):  
Byung Chan Kwon ◽  
Dohyung Kang ◽  
Seung Woo Lee ◽  
No-Kuk Park ◽  
Jang Hun Lee ◽  
...  

This study examined the effects of the porosity of catalytic bag-filter materials for applications to the SNCR (selective noncatalytic reduction)-SCR (selective catalytic reduction) hybrid process for highly treating nitrogen Oxides (NOx) in the exhaust gas of a combustion process. A V2O5/TiO2 catalyst was dispersed in a PTFE (poly-tetra-fluoro-ethylene) used as the catalytic bag-filter material to remove particulate matter and nitrogen oxides contained in the combustion exhaust gas. Macroporous alumina was added into a V2O5/TiO2-dispersed PTFE to improve the catalytic activity of V2O5/TiO2 dispersed in the PTFE material. In this study, the textural properties and denitrification performances of the V2O5/TiO2-dispersed PTFE materials were examined according to the addition of macro-porous alumina. When the denitrification catalyst was solely dispersed in the PTFE material, the catalyst inside the PTFE backbone had low gas-solid contact efficiency owing to the low porosity of the PTFE materials, resulting in low denitrification efficiency. On the other hand, the catalytic activity of V2O5/TiO2 dispersed inside the macro-porous PTFE material was significantly enhanced by adding macro-porous alumina into the PTFE matrix. The enhanced textural properties of the macro-porous PTFE material where V2O5/TiO2 was uniformly dispersed proved the facilitated diffusion of combustion exhaust gas into the PTFE material.


2021 ◽  
Vol 783 ◽  
pp. 147043
Author(s):  
Ki Joon Heo ◽  
Hyun Ju Oh ◽  
Hyeonjin Eom ◽  
Yeonsang Kim ◽  
Jae Hee Jung
Keyword(s):  

2021 ◽  
Author(s):  
Maria Vinha ◽  
Joao Silva ◽  
Senhorinha Teixeira ◽  
Ana Gomes ◽  
Jose Teixeira

Author(s):  
Kunihiro Fukui ◽  
Genki Ichiba ◽  
Mohammad Irwan Fatkhur Rozy ◽  
Keiya Ito ◽  
Tomonori Fukasawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document