metal structure
Recently Published Documents


TOTAL DOCUMENTS

858
(FIVE YEARS 267)

H-INDEX

28
(FIVE YEARS 5)

2022 ◽  
Vol 1049 ◽  
pp. 11-17
Author(s):  
Ivan Kaplunov ◽  
Taras Malinskiy ◽  
S.I. Mikolutskiy ◽  
Vladimir Rogalin ◽  
Yuriy Khomich ◽  
...  

We investigated the process of laser heat treatment of polished brass samples (36% zinc, containing a small amount of lead, which does not dissolve in the alloy and is in the form of inclusions, having micron and submicron size) by impacting to a series of 25 - 30 ultraviolet (UV) pulses of a Nd:YAG laser (third harmonic, wavelength λ = 355 nm, duration τ = 10 ns, pulse repetition rate f = 10 Hz, pulse energy density ~ 0.15 - 1.0 J/cm2) in the stationary spot mode. Copper and its alloys absorb up to 90% of the energy of this laser. It is found that the relaxation of the absorbed energy of laser radiation in the metal occurs nonuniformly. Defects in the metal structure such as grain boundaries and lead inclusions are visualized. Traces of crystallographic sliding appear inside some grains. With an increase in the number of impacting impulses, accumulation of damage is observed. A further increase in the radiation energy density leads to an aggravation of the observed phenomena.


Computation ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Riheb Mabrouk ◽  
Hassane Naji ◽  
Hacen Dhahri ◽  
Zouhir Younsi

In this investigation, a comprehensive numerical analysis of the flow involved in an open-ended straight channel fully filled with a porous metal foam saturated and a phase change material (paraffin) has been performed using a single relaxation time lattice Boltzmann method (SRT-LBM) at the representative elementary volume (REV) scale. The enthalpy-based approach with three density functions has been employed to cope with the governing equations under the local thermal non-equilibrium (LTNE) condition. The in-house code has been validated through a comparison with a previous case in literature. The pore per inch density (10≤PPI≤60) and porosity (0.7≤ε≤0.9) effects of the metal structure were analyzed during melting/solidifying phenomena at two Reynolds numbers (Re = 200 and 400). The relevant findings are discussed for the LTNE intensity and the entropy generation rate (Ns). Through the simulations, the LTNE hypothesis turned out to be secure and valid. In addition, it is maximum for small PPI value (=10) whatever the parameters deemed. On the other hand, high porosity (=0.9) is advised to reduce the system’s irreversibility. However, at a moderate Re (=200), a small PPI (=10) would be appropriate to mitigate the system irreversibility during the charging case, while a large value (PPI = 60) might be advised for the discharging case. In this context, it can be stated that during the melting period, low porosity (=0.7) with low PPI (=10) improves thermal performance, reduces the system irreversibility and speeds up the melting rate, while for high porosity (=0.9), a moderate PPI (=30) should be used during the melting process to achieve an optimal system.


Author(s):  
Tan Zhang ◽  
Denggao Guan ◽  
Ningtao Liu ◽  
Jianguo Zhang ◽  
Jinfu Zhang ◽  
...  

Abstract This work fabricates deep-ultraviolet (DUV) photodetectors (PDs) with a metal-semiconductor-metal structure based on radio-frequency sputtered amorphous Ga2O3 films at room temperature. The Ga2O3-based PD exhibits a low dark current of 1.41×10-11 A, good responsivity of 1.77 A/W and a fast-rise response time of 114 ms. A series of annealing treatments with different atmospheres have been found effective to reduce the oxygen vacancy concentration, exhibiting a trade-off effect between the responsivity and response time. These results demonstrate a cost-effective room-temperature approach for fabricating amorphous Ga2O3-based PDs and develop possible post-synthetic methods for tuning the PD performance.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012049
Author(s):  
Tingji Chen ◽  
Lian Yang ◽  
Weibing Gu ◽  
Haiyang Gao ◽  
Junchi Zhou ◽  
...  

Abstract Grounding device is an indispensable facility for lightning protection of buildings. Nowadays, SGCC (State Grid Corporation of China) is promoting steel structure substations, which are made of metal as a whole including the roof. There are now several grounding approaches when the roof was struck by a lightning flash, including external grounding, nearby grounding, separate grounding and common grounding. This paper took a metal structure substation in Nanjing as an example and calculated its ground potential in case of different grounding system. We came to such conclusions: 1) For substations of separate grounding system, the ground potential after a lightning strike could reach as high as 743.5kV and 230kV with a single earthing electrode and multiple electrodes respectively. 1000μs after the strike, the ground potential is 91.57 kV, which is still a significant threat to humans and equipment inside. 2) Nearby grounding and external grounding are both common grounding system. The peak of ground potential after a lightning strike is 101.4kV and 109kV respectively, much lower than that of separate grounding system. They also have similar waveform and peak time. 3) 3500μs after the lightning strike, the ground potential all over the grid is around 36V. 4) Separate grounding is not a sound choice of grounding system for steel structure substations. From the perspective of cost and discharging capacity, nearby grounding is the most reasonable scheme for a steel structure substation.


Author(s):  
Oleksii Grevtsev ◽  
Ninel Selivanova ◽  
Pavlo Popovych ◽  
Liubomyr Poberezhny ◽  
Yurii Rudyak ◽  
...  

The main objective of the study was to develop a model and analyze the thermomechanical behavior of the hub material of the vehicle brake disk. The simulation strategy was based on the solution of the three-dimensional problem of the theory of elasticity for the case of effect of external loads and temperature fields on the metal structure element of the vehicle brakes. To solve this type of task of the theory of elasticity, the differential equations of the second order were used for the first time. Adaptation of the proposed model, completed in the article, has proved the correctness of use of these equations in modeling the thermomechanical processes with determination of stresses and displacements in unevenly heated rotary cylinders of the final length. The proposed method can be applied with high efficiency in stress strain state simulation of individual parts of vehicles.


Author(s):  
P.I. Shalupina ◽  
◽  
A.A. Artyomova ◽  

The article deals with the issues of modeling the stress-strain state of the attachment points of the cab of a wheeled chassis of high load capacity. The main design loads are determined. Geometric and computational finite element models are constructed, taking into account the features of the metal structure. The technique of gluing elements of the grid model is applied. The contact interaction of the parts is taken into account. Based on the calculations performed, conclusions are drawn about the compliance of the developed structure with the strength requirements.


Author(s):  
V.A. Karpychev ◽  
◽  
A.B. Bolotina ◽  
D.V. Kovin ◽  
◽  
...  

The article deals with the issues of modeling the stress-strain state of the attachment points of the cab of a wheeled chassis of high load capacity. The main design loads are determined. Geometric and computational finite element models are constructed, taking into account the features of the metal structure. The technique of gluing elements of the grid model is applied. The contact interaction of the parts is taken into account. Based on the calculations performed, conclusions are drawn about the compliance of the developed structure with the strength requirements.


Author(s):  
Ghazanfar Abbas ◽  
Muhammad Ibrahim ◽  
Ali Ahmad ◽  
Muhammad Azeem ◽  
Kashif Elahi

Sign in / Sign up

Export Citation Format

Share Document