КОНСТРУКТИВНО-ТЕХНОЛОГІЧНІ ОСОБЛИВОСТІ ХВОСТО-ВИХ БАЛОК СІТЧАСТОГО ТИПУ З ПОЛІМЕРНИХ КОМПО-ЗИЦІЙНИХ МАТЕРІАЛІВ ВЕРТОЛЬОТІВ ТРАНСПОРТНОЇ КАТЕГОРІЇ

Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.

Author(s):  
V. I. Tarichko ◽  
P. I. Shalupina

The paper focuses on a method for assessing the dynamic loading of the frame of a special wheeled chassis when it moves on roads of various categories. Based on the developed finite element model of the frame, we obtained and analyzed full-size patterns of the stress-strain state of the frame and oscillograms of equivalent stresses in the most loaded zones of the frame.


2016 ◽  
Vol 685 ◽  
pp. 186-190 ◽  
Author(s):  
Е.V. Eskina ◽  
E.G. Gromova

The paper describes the method of manufacture of profiles in cramped bending conditions using polyurethaneThe scope of studies included stress-strain state of elastic die and parent sheet, as well as the influence of the basic process parameters on characteristics of the produced items using ANSYS software.


2019 ◽  
Vol 20 (4) ◽  
pp. 285-292
Author(s):  
Sergei V. Smirnov ◽  
Vladimir V. Kopylov ◽  
Alexander R. Makarov ◽  
Alexander A. Vorobyev ◽  
Kirill V. Shkarin

The article describes the features developed by the authors of the profiling method of the piston skirt, provides the main parameters that affect the lubrication conditions of the piston skirt and the magnitude of mechanical losses. In computational studies, the basic formulas are given for determining the thickness of the oil layer in a piston skirt - cylinder sleeve conjunction to assess the nature of friction. To determine the deformations, the finite element method is used on the spatial model of the piston. To verify the finite element model, a stand for experimental studies was developed. The article describes the developed stand, the methodology and results of experimental studies of the stress-strain state of the two-piece piston skirt obtained at this stand and a comparative analysis of the results of the calculated and experimental studies of the stress-strain state of the two-piece piston skirt of a diesel engine. The research results showed that the developed stand can be used to verify mathematical models for calculating the stress-strain state of the piston skirt in the pilot production of internal combustion engine pistons to accelerate and reduce the cost of the piston design development process, as well as the results of experimental studies obtained at the stand, can be used as initial data for the developed mathematical model of the dynamics of the movement of the piston and the profiling of the piston skirt.


2019 ◽  
Vol 7 (2) ◽  
pp. 5-9
Author(s):  
Галина Кравченко ◽  
Galina Kravchenko ◽  
Елена Труфанова ◽  
Elena Trufanova ◽  
Денис Суслопаров ◽  
...  

The multi-variant loading of the large-span unique steel covering of the stadium under snow load is considered. The spatial finite element model is developed using LIRA software. The analysis of the existing schemes application of snow loading is carried out according to the codes. Four snow load cases on the stadium's covering are assumed for analysis. The analysis of the stress-strain state of the stadium structures, the selection and verification of sections of the steel covering are performed. The results show that it is necessary to simulate behaviour of a structure under all possible load cases.


Author(s):  
Viktor Gaidaichuk ◽  
Kostiantyn Kotenko

The problem of dynamic deformation of a three-layer cylindrical shell under non-stationary loads in the case of rigid clamping of the shell ends is considered. The article presents the results of assessing the stress-strain state of a three-layer cylindrical shell, taking into account its structural feature, the ratio of the sheathing thickness and the physical and mechanical characteristics of a one-piece polymer filler. Calculations were performed by software complex Nastran. The values of displacements and stresses were calculated by the algorithm of direct transient dynamic process. The step duration of the time interval was 0.0000025 s, and the total number of steps was 200. The choice of the type of three-dimensional finite element was due to obtaining more detailed and accurate calculation results. The finite element model included 19000 three-dimensional finite elements and numbered 20800 nodes. The influence of geometrical parameters of shell layers with different physical and mechanical properties of one-piece filler on the stress-strain state under axisymmetric internal impulse load is investigated. Numerical results on the dynamics of the three-layer structure, obtained by the finite element method, allow to characterize the stress-strain state of the three-layer elastic structure of the cylindrical type at any time in the studied time interval. Optimization of the shell design is recommended. Changing the ratio of the thickness of the internal and external shells of the shell significantly affects the stress-strain state of the shell and its performance. Increasing the thickness of the internal layer of the shell significantly contributes to the increase of the latter. Comparison of the given results with materials of other similar researches and positions, testify to objectivity of the made approach.


2019 ◽  
Vol 484 (1) ◽  
pp. 35-40
Author(s):  
V. N. Bakulin

This study proposes a finite-element block approach to building a new, refined model for layer-by-layer analysis of the stress–strain state of generally irregular sandwich shells of revolution with double curvature. A core material model is developed for the first time for such shells, based on more precise statements compared to those of similar common models; it allows the avoidance of the discontinuity of generalized displacements on the surfaces of an interface with base layers and switching to simpler models depending on the problem statement. Using the proposed model, it is possible to create an allowance for the changes in the properties and parameters of the stress–strain state in all the three coordinates, to which the shell is assigned, and to obtain a solution within the specified statement for different shell shapes and boundary conditions of layers, including in the case of discontinuity.


Author(s):  
V.V. LEONTYEV

The method for analyzing of stress-strain state characteristics of unloaded riveted joints performed with OST 1 11781-74 rivets has been developed using Coupled Euler-Lagrange finite element approach implemented in the CAD / CAE system Abaqus. A comparative analysis of the stress-strain state characteristics of the examined riveted joint’s finite element models using the Lagrangian and the Coupled Lagrangian-Eulerian finite element approaches has been conducted. A three- dimensional finite element model based on the CLE method has been proposed for further study of fatigue strength and durability of the loaded riveted joints.


Sign in / Sign up

Export Citation Format

Share Document