Stress-strain state for bending of rectangular, transversally isotropic plates of variables thickness

1992 ◽  
Vol 28 (6) ◽  
pp. 353-359
Author(s):  
Yu. N. Nemish ◽  
M. Yu. Kashtalyan
2016 ◽  
Vol 5 ◽  
pp. 58-66
Author(s):  
Igor Bokov ◽  
Natalia Bondarenko ◽  
Elena Strelnikova

The study examined the construction of the fundamental solution for the equations of statics {1,2} – approximation for transversely isotropic plates under bending with the action of concentrated force. Equations {1,2} -approximation were obtained by the decomposition method in the thickness coordinate using the Legendre polynomials. These equations take into account all the components of the stress tensor, including the transverse shear and normal stresses. Since the classical theory of Kirchhoff-Love doesn’t take account of these stresses, the study on the basis of refined theories of stress-strain state of transversely isotropic plates under the action of concentrated force effects is an important scientific and technical problem. The fundamental solution of obtained equations results using a two-dimensional Fourier integral transform and inverse treatment techniques, built with the help of a special G-function. This method allows reducing the system of resolving differential equations for statics of flat plates and shells to a system of algebraic equations. After that, the inverse Fourier transform restores the fundamental solution. The work was carried out numerical studies that demonstrate patterns of behavior of components of the stress-strain state, depending on the elastic constants of transversely isotropic material. The results play a decisive role in the study of boundary value problems in the mechanics of thin-walled elements of constructions, including under the influence of concentrated and local diverse forces.


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


Sign in / Sign up

Export Citation Format

Share Document