Invariant solutions of viscoplasticity equations and solution of the problem of helical motion of a bingham fluid between coaxial cylinders

1992 ◽  
Vol 32 (4) ◽  
pp. 554-560
Author(s):  
S. I. Senashev ◽  
V. A. Chugunov
Author(s):  
Abdelkrim Merah ◽  
Ridha Kelaiaia ◽  
Faiza Mokhtari

Abstract The Taylor-Couette flow between two rotating coaxial cylinders remains an ideal tool for understanding the mechanism of the transition from laminar to turbulent regime in rotating flow for the scientific community. We present for different Taylor numbers a set of three-dimensional numerical investigations of the stability and transition from Couette flow to Taylor vortex regime of a viscous incompressible fluid (liquid sodium) between two concentric cylinders with the inner one rotating and the outer one at rest. We seek the onset of the first instability and we compare the obtained results for different velocity rates. We calculate the corresponding Taylor number in order to show its effect on flow patterns and pressure field.


2011 ◽  
Vol 8 (1) ◽  
pp. 143-152
Author(s):  
S.F. Khizbullina

The steady flow of anomalous thermoviscous liquid between the coaxial cylinders is considered. The inner cylinder rotates at a constant angular velocity while the outer cylinder is at rest. On the basis of numerical experiment various flow regimes depending on the parameter of viscosity temperature dependence are found.


Sign in / Sign up

Export Citation Format

Share Document