Synoptic features and structures of some equatorial vortices over the South China Sea in the Malaysian region during the winter monsoon, December 1973

1977 ◽  
Vol 115 (5-6) ◽  
pp. 1303-1333 ◽  
Author(s):  
Boon Khean Cheang
2003 ◽  
Vol 59 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Zicheng Peng ◽  
Tegu Chen ◽  
Baofu Nie ◽  
M. John Head ◽  
Xuexian He ◽  
...  

AbstractWe have used correlative analysis between mean December–January–February winter wind velocities, measured at the Xisha Meteorological Observatory (16°50′N, 112°20′E) in the middle of the South China Sea, and mean δ18O data for the corresponding month from Porites lutea coral, collected in Longwan waters (19°20′N, 110°39′E), to obtain a linear equation relating the two datasets. This winter wind velocity for the South China Sea (WMIIscs) can then be correlated to the coral δ18O by the equation WMIIscs = −1.213–1.351 δ18O (‰ PDB), r = −0.60, n = 40, P = 0.01. From this, the calculated WMIIscs-δ18O series from 1944 to 1997 tends to decrease during the 1940s to the 1960s; it increases slightly during the 1970s and then decreases again in the 1980s and 1990s. The calculated decadal mean WMIIscs-δ18O series had a obvious decrease from 5.92 to 4.63 m/s during the period of 1944–1997. The calculated yearly mean WMIIscs-δ18O value is 5.58 m/s from 1944 to 1976 and this decreases to 4.85 m/s from 1977 to 1998. That is the opposite trend to the observed yearly mean SST variation. The yearly mean SST anomaly is −0.27° from 1943 to 1976 and this increases to +0.16° from 1977 to 1998. Spectral analysis used on a 54-year-long calculated WMIIscs-δ18O series produces spectral peaks at 2.4–7 yr, which can be closely correlated with the quasibiennial oscillation band (QBO band, 2–2.4 yr) and the El Ñino southern oscillation band (ENSO band, 3–8 yr). Hence most of the variability of the winter monsoon intensity in the middle of the South China Sea is mainly constrained by changes in the thermal difference between the land and the adjoining sea area, perhaps due to global warming.


2019 ◽  
Vol 46 (22) ◽  
pp. 13363-13370 ◽  
Author(s):  
Yancheng Zhang ◽  
Kai Zhu ◽  
Chao Huang ◽  
Deming Kong ◽  
Yuxin He ◽  
...  

2020 ◽  
Author(s):  
Baochao Liu ◽  
Yue Fang ◽  
Shuangwen Sun ◽  
Celia Tana ◽  
Yongliang Duan ◽  
...  

2017 ◽  
Vol 36 (2) ◽  
pp. 216-229 ◽  
Author(s):  
Cong Zhang ◽  
Yang Ding ◽  
Xianwen Bao ◽  
Congcong Bi ◽  
Ruixiang Li ◽  
...  

2021 ◽  
Author(s):  
Guo-Qing Jiang ◽  
Qinjian Jin ◽  
Jun Wei ◽  
Paola Malanotte-Rizzoli ◽  
Arnold L. Gordon ◽  
...  

AbstractThe South China Sea (SCS) experienced a significant reduction in warming rate (− 0.01 °C decade−1, $$p>0.10$$ p > 0.10 ) during 1999–2010 following an accelerated and unprecedented warming (+ 0.15 °C decade−1, $$p<0.01$$ p < 0.01 ) in the last three decades (1970–1998). However, most global climate models of the CMIP5 RCP4.5 scenario failed to capture this SCS warming slowdown. In this study, we identify two drivers through numerical simulations by using a regional high-resolution, ocean–atmosphere coupled climate model: the major variance (75%) in the sea surface warming slowdown could be explained by the strengthened winter monsoon over the SCS, and the minor variance (12%) could be explained by the changes in the upper ocean circulations. The winter monsoon over the SCS is likely linked to the La Niña-like SST pattern in the eastern tropical Pacific, which strengthens the Walker circulation and results in anticyclonic circulation over the northwestern Pacific. This enhanced winter monsoon is the atmospheric driver that slows down the SCS basin-scale warming, while the largest reduction of the warming rate occurs in the northern SCS that can be attributed to the oceanic throughflow via the Luzon Strait. These findings could have important implications for future climate projections over the SCS and adjacent oceans.


Sign in / Sign up

Export Citation Format

Share Document