A rapid immunogold-silver staining for detection of bromodeoxyuridine in large numbers of plastic sections, using microwave irradiation

1990 ◽  
Vol 22 (6-7) ◽  
pp. 321-326 ◽  
Author(s):  
H. J. G. Van De Kant ◽  
A. M. M. Van Pelt ◽  
R. P. F. A. Vergouwen ◽  
D. G. De Rooij
1991 ◽  
pp. 347-367
Author(s):  
MATHILDE E. BOON ◽  
H.J.G. VAN DE KANT ◽  
L.P. KOK

1990 ◽  
Vol 38 (2) ◽  
pp. 267-273 ◽  
Author(s):  
B Thoolen

In this study, BrdUrd labeling of S-phase cells in the small intestine and testes was accomplished using microwave irradiation. In this way crypt cells, spermatogonia, and Leydig cells could be labeled using removable plastic-embedded sections and immunogold-silver staining (IGSS). By using short periods of microwave irradiation for incubation of the monoclonal antibodies and the protein A-colloidal gold solution, the detection of BrdUrd-labeled cells could be remarkably enhanced. A comparative study of BrdUrd labeled spermatogonia in the testis of a Cpb-N mouse that received both [3H]-thymidine and BrdUrd proved that 90% of the BrdUrd-labeled cells also showed [3H]-thymidine labeling. The radioactive [3H]-thymidine labeling was a time-consuming method of 4 weeks' duration, whereas the BrdUrd-labeled cells could be labeled, fixed, enhanced, and counterstained in less than 3 hr. This investigation proves that BrdUrd labeling of S-phase cells can be a reliable, reproductive, rapid, and non-radioactive alternative method for [3H]-thymidine labeling of proliferating cells.


2009 ◽  
Vol 385 (1) ◽  
pp. 174-175 ◽  
Author(s):  
S.O. Byun ◽  
Q. Fang ◽  
H. Zhou ◽  
J.G.H. Hickford

1995 ◽  
Vol 103 (6) ◽  
pp. 403-413 ◽  
Author(s):  
Francisco-Javier Medina ◽  
Antonio Cerdido ◽  
Roberto Marco

Author(s):  
Kazuaki Misugi ◽  
Nobuko Misugi ◽  
Hiroshi Yamada

The authors had described the fine structure of a type of pancreatic islet cell, which appeared different from typical alpha and beta cells, and tentatively considered that this third type of granular cell probably represents the D cell (Figure 1).Since silver staining has been widely used to differentiate different types of pancreatic islet cells by light microscopy, an attempt to examine this staining reaction at the electron microscopic level was made.Material and Method: Surgically removed specimens from three infants who suffered from severe hypoglycemia were used. The specimens were fixed and preserved in 20% neutral formalin. Frozen sections, 30 to 40 micron thick, were prepared and they were stained by Bielschowsky's method as modified by Suzuki (2). The stained sections were examined under a microscope and islet tissues were isolated. They were fixed in 1% osmium tetroxide in phosphate buffer for one hour and embedded in Epon 812 following dehydration through a series of alcohols and propylene oxide.


Author(s):  
T. G. Merrill ◽  
B. J. Payne ◽  
A. J. Tousimis

Rats given SK&F 14336-D (9-[3-Dimethylamino propyl]-2-chloroacridane), a tranquilizing drug, developed an increased number of vacuolated lymphocytes as observed by light microscopy. Vacuoles in peripheral blood of rats and humans apparently are rare and are not usually reported in differential counts. Transforming agents such as phytohemagglutinin and pokeweed mitogen induce similar vacuoles in in vitro cultures of lymphocytes. These vacuoles have also been reported in some of the lipid-storage diseases of humans such as amaurotic familial idiocy, familial neurovisceral lipidosis, lipomucopolysaccharidosis and sphingomyelinosis. Electron microscopic studies of Tay-Sachs' disease and of chloroquine treated swine have demonstrated large numbers of “membranous cytoplasmic granules” in the cytoplasm of neurons, in addition to lymphocytes. The present study was undertaken with the purpose of characterizing the membranous inclusions and developing an experimental animal model which may be used for the study of lipid storage diseases.


Author(s):  
Robert Corbett ◽  
Delbert E. Philpott ◽  
Sam Black

Observation of subtle or early signs of change in spaceflight induced alterations on living systems require precise methods of sampling. In-flight analysis would be preferable but constraints of time, equipment, personnel and cost dictate the necessity for prolonged storage before retrieval. Because of this, various tissues have been stored in fixatives and combinations of fixatives and observed at various time intervals. High pressure and the effect of buffer alone have also been tried.Of the various tissues embedded, muscle, cartilage and liver, liver has been the most extensively studied because it contains large numbers of organelles common to all tissues (Fig. 1).


Author(s):  
Roy Skidmore

The long-necked secretory cells in Onchidoris muricata are distributed in the anterior sole of the foot. These cells are interspersed among ciliated columnar and conical cells as well as short-necked secretory gland cells. The long-necked cells contribute a significant amount of mucoid materials to the slime on which the nudibranch travels. The body of these cells is found in the subepidermal tissues. A long process extends across the basal lamina and in between cells of the epidermis to the surface of the foot. The secretory granules travel along the process and their contents are expelled by exocytosis at the foot surface.The contents of the cell body include the nucleus, some endoplasmic reticulum, and an extensive Golgi body with large numbers of secretory vesicles (Fig. 1). The secretory vesicles are membrane bound and contain a fibrillar matrix. At high magnification the similarity of the contents in the Golgi saccules and the secretory vesicles becomes apparent (Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document