The crossover from classical to quantum regime in the problem of the decay of the metastable state

1985 ◽  
Vol 41 (3-4) ◽  
pp. 425-443 ◽  
Author(s):  
A. I. Larkin1 ◽  
Yu. N. Ovchinnikov
2021 ◽  
Author(s):  
Naotaka Yoshikawa ◽  
Hiroki Suganuma ◽  
Hideki Matsuoka ◽  
Yuki Tanaka ◽  
Pierre Hemme ◽  
...  

2021 ◽  
Vol 184 (1) ◽  
Author(s):  
Gianmarco Bet ◽  
Vanessa Jacquier ◽  
Francesca R. Nardi

AbstractWe consider the problem of metastability for stochastic dynamics with exponentially small transition probabilities in the low temperature limit. We generalize previous model-independent results in several directions. First, we give an estimate of the mixing time of the dynamics in terms of the maximal stability level. Second, assuming the dynamics is reversible, we give an estimate of the associated spectral gap. Third, we give precise asymptotics for the expected transition time from any metastable state to the stable state using potential-theoretic techniques. We do this in a general reversible setting where two or more metastable states are allowed and some of them may even be degenerate. This generalizes previous results that hold for a series of only two metastable states. We then focus on a specific Probabilistic Cellular Automata (PCA) with configuration space $${\mathcal {X}}=\{-1,+1\}^\varLambda $$ X = { - 1 , + 1 } Λ where $$\varLambda \subset {\mathbb {Z}}^2$$ Λ ⊂ Z 2 is a finite box with periodic boundary conditions. We apply our model-independent results to find sharp estimates for the expected transition time from any metastable state in $$\{\underline{-1}, {\underline{c}}^o,{\underline{c}}^e\}$$ { - 1 ̲ , c ̲ o , c ̲ e } to the stable state $$\underline{+1}$$ + 1 ̲ . Here $${\underline{c}}^o,{\underline{c}}^e$$ c ̲ o , c ̲ e denote the odd and the even chessboard respectively. To do this, we identify rigorously the metastable states by giving explicit upper bounds on the stability level of every other configuration. We rely on these estimates to prove a recurrence property of the dynamics, which is a cornerstone of the pathwise approach to metastability.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 651
Author(s):  
Maxime Perdriat ◽  
Clément Pellet-Mary ◽  
Paul Huillery ◽  
Loïc Rondin ◽  
Gabriel Hétet

Controlling the motion of macroscopic oscillators in the quantum regime has been the subject of intense research in recent decades. In this direction, opto-mechanical systems, where the motion of micro-objects is strongly coupled with laser light radiation pressure, have had tremendous success. In particular, the motion of levitating objects can be manipulated at the quantum level thanks to their very high isolation from the environment under ultra-low vacuum conditions. To enter the quantum regime, schemes using single long-lived atomic spins, such as the electronic spin of nitrogen-vacancy (NV) centers in diamond, coupled with levitating mechanical oscillators have been proposed. At the single spin level, they offer the formidable prospect of transferring the spins’ inherent quantum nature to the oscillators, with foreseeable far-reaching implications in quantum sensing and tests of quantum mechanics. Adding the spin degrees of freedom to the experimentalists’ toolbox would enable access to a very rich playground at the crossroads between condensed matter and atomic physics. We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state and discuss the challenges ahead. Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that, once overcome, will enable these systems to unleash their full potential.


2006 ◽  
Vol 355 (4-5) ◽  
pp. 289-292 ◽  
Author(s):  
D. Schildknecht ◽  
B.G. Zakharov

1995 ◽  
Vol 51 (11) ◽  
pp. 7325-7328 ◽  
Author(s):  
L. Sheng ◽  
D. Y. Xing ◽  
Z. D. Wang

2008 ◽  
Vol 100 (25) ◽  
Author(s):  
Sergei B. Orlinskii ◽  
Jan Schmidt ◽  
Pavel G. Baranov ◽  
Matthias Bickermann ◽  
Boris M. Epelbaum ◽  
...  

1993 ◽  
Vol 70 (17) ◽  
pp. 2577-2580 ◽  
Author(s):  
M. Maaloum ◽  
D. Ausserre ◽  
D. Chatenay ◽  
Y. Gallot

Sign in / Sign up

Export Citation Format

Share Document