Scale-up effects in modelling a full-size zinc electrowinning cell

1992 ◽  
Vol 22 (8) ◽  
pp. 687-692 ◽  
Author(s):  
G. W. Barton ◽  
A. C. Scott
2018 ◽  
Vol 181 ◽  
pp. 103-112 ◽  
Author(s):  
Jin Luo ◽  
PengPeng Jiao ◽  
Ning Duan ◽  
Fuyuan Xu ◽  
Linhua Jiang

Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 444
Author(s):  
Andrea Arguillarena ◽  
María Margallo ◽  
Axel Arruti-Fernández ◽  
Javier Pinedo ◽  
Pedro Gómez ◽  
...  

Zinc recovery from spent pickling acids (SPAs) can play an important role in achieving a circular economy in the galvanizing industry. This work evaluates the scale-up of membrane-based solvent extraction technology aimed at the selective separation of zinc from industrial SPAs as a purification step prior to zinc electrowinning (EW). The experiments were carried out at a pilot scale treating SPAs batches of 57 to 91 L in a non-dispersive solvent extraction (NDSX) configuration that simultaneously performed the extraction and backextraction steps. The pilot plant was equipped with four hollow fiber contactors and 80 m2 of total membrane area, which was approximately 30 times higher than previous bench-scale studies. Tributylphosphate diluted in Shellsol D70 and tap water were used as organic and stripping agents, respectively. Starting with SPAs with high Zn (71.7 ± 4.3 g·L−1) and Fe (82.9 ± 5.0 g·L−1) content, the NDSX process achieved a stripping phase with 55.7 g Zn·L−1 and only 3.2 g Fe·L−1. Other minor metals were not transferred, providing the purified zinc stripping with better quality for the next EW step. A series of five consecutive pilot-scale experiments showed the reproducibility of results, which is an indicator of the stability of the organic extractant and its adequate regeneration in the NDSX operation. Zinc mass transfer fluxes were successfully correlated to zinc concentration in the feed SPA phase, together with data extracted from previous laboratory-scale experiments, allowing us to obtain the design parameter that will enable the leap to the industrial scale. Therefore, the results herein presented demonstrate the NDSX technology in an industrially relevant environment equivalent to TRL 6, which is an essential progress to increase zinc metal resources in the galvanizing sector.


Author(s):  
L.E. Murr ◽  
J.S. Dunning ◽  
S. Shankar

Aluminum additions to conventional 18Cr-8Ni austenitic stainless steel compositions impart excellent resistance to high sulfur environments. However, problems are typically encountered with aluminum additions above about 1% due to embrittlement caused by aluminum in solid solution and the precipitation of NiAl. Consequently, little use has been made of aluminum alloy additions to stainless steels for use in sulfur or H2S environments in the chemical industry, energy conversion or generation, and mineral processing, for example.A research program at the Albany Research Center has concentrated on the development of a wrought alloy composition with as low a chromium content as possible, with the idea of developing a low-chromium substitute for 310 stainless steel (25Cr-20Ni) which is often used in high-sulfur environments. On the basis of workability and microstructural studies involving optical metallography on 100g button ingots soaked at 700°C and air-cooled, a low-alloy composition Fe-12Cr-5Ni-4Al (in wt %) was selected for scale up and property evaluation.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
RS Barboza ◽  
BR Rocha ◽  
AC Siani ◽  
LMM Valente ◽  
JL Mazzei
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document