Induced polarization of electrons. Asymmetry of the angular distribution of neutrinos generated in a magnetic field

1985 ◽  
Vol 65 (1) ◽  
pp. 1066-1072 ◽  
Author(s):  
Yu. M. Loskutov
2014 ◽  
Vol 70 (a1) ◽  
pp. C165-C165
Author(s):  
Michał Stękiel ◽  
Radosław Przeniosło ◽  
Dariusz Wardecki ◽  
Thomas Buslaps ◽  
Jacek Jasiński

The magnetic interaction between the crystallites of weak ferromagnetic α-Fe2O3 has been studied by combining SR based X-ray diffraction with an externally applied magnetic field. The measurements were performed with several polycrystalline α-Fe2O3 [1,2] samples (dry or in suspensions) placed in a half-filled cylindrical container in ambient conditions. The axis of the cylindrical container was oriented vertically parallel to the applied dc magnetic field. The polycrystalline sample had a free surface, so the α-Fe2O3 crystallites were free to move. The full Debye-Scherrer diffraction rings were measured with a 2D pixel detector at the beamline ID-15B at ESRF. In the absence of the magnetic field the intensity distribution over azimuthal angle was a uniform, i.e. there was no texture. The applied maximal field, B=0.9T was too small to change the magnetic ordering of α-Fe2O3 but it was sufficiently strong to reorient large amount of crystallites in order to minimize the angle between their ferromagnetic moment direction and the external field. Pronounced texture patterns with clear maxima in the angular distribution of the intensity across each Debye-Scherrer ring were observed. The observed textured intensity distribution was analyzed quantitatively by using a model based on the magnetic anisotropy observed in single crystals of α-Fe2O3. The analysis yielded two important parameters: (i) the width of the angular distribution of the ferromagnetic moments directions around the external field direction, and (ii) the relative quantity of the crystallites that did reorient in the external field. The α-Fe2O3 samples were also characterized with TEM technique. The analysis of X-ray and TEM studies provide new conclusions about the magnetic interaction between the α-Fe2O3 crystallites [3]. The proposed measurement technique can be applied to study other weak ferromagnetic materials.


1991 ◽  
Vol 9 (2) ◽  
pp. 325-325
Author(s):  
Chih-Kang Chou ◽  
Hui-Hwa Chen

Extended abstractThomson scattering in pulsar magnetospheres has previously been studied by several authors. The most distinguishing feature is the fact that the super-strong magnetic field (B ~ 1012 G) greatly affects the Thomson scattering process, resulting in resonances in the scattering cross-section (Canuto et al. 1971; Herold 1979; Chou 1986; Daugherty and Harding 1986). The important consequences of these cyclotron resonances are the increase in the photon mean free path in the scattering regions, and strongly affecting the angular distribution, and polarisation properties of the scattered photons (Chou 1986; Chou et al. 1989).


2013 ◽  
Vol 138 (23) ◽  
pp. 234201 ◽  
Author(s):  
Mark C. Butler ◽  
Gwendal Kervern ◽  
Thomas Theis ◽  
Micah P. Ledbetter ◽  
Paul J. Ganssle ◽  
...  

1964 ◽  
Vol 11 (2) ◽  
pp. 185-188 ◽  
Author(s):  
I.I. Gurevich ◽  
L.A. Makariyna ◽  
B.A. Nikol'sky ◽  
B.V. Sokolov ◽  
L.V. Surkova ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
pp. 36-42
Author(s):  
Dmitriy Peregudov ◽  
Anatoly Soloviev ◽  
Igor Yashin ◽  
Victor Shutenko

We calculate the angular distribution of cosmic rays at a given point of the heliosphere under the assumption that the incoming flux from outer space is isotropic. The static magnetic field is shown to cause no anisotropy provided that the observation point is situated out of the trapped particle area. We consider a coronal ejection model in the form of a static cylinder with an axial homogeneous magnetic field inside. We calculate angular distribution samples in the trapped particle area (inside the cylinder) and show that there is a certain cone of directions with a reduced flux. For the same model with the moving cylinder, the angular distribution samples are calculated for different positions of the observation point outside the cylinder. Anisotropy of order of the ejection to light velocity ratio is shown to arise. The calculated samples are in qualitative agreement with URAGAN muon hodoscope data.


Sign in / Sign up

Export Citation Format

Share Document