Derivation and investigation of an averaged quantum equation of motion for a nonlinear oscillator in the field of an harmonic force

1977 ◽  
Vol 31 (1) ◽  
pp. 349-356 ◽  
Author(s):  
V. N. Sazonov
2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Pauline J. Ollitrault ◽  
Abhinav Kandala ◽  
Chun-Fu Chen ◽  
Panagiotis Kl. Barkoutsos ◽  
Antonio Mezzacapo ◽  
...  

2004 ◽  
Vol 36 (2) ◽  
pp. 271-281 ◽  
Author(s):  
V. Branchina ◽  
H. Faivre ◽  
D. Zappalá

2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Mohammad A. Al-Shudeifat

A transformation is employed to obtain expressions for the decay of the displacement, the velocity, and the energy for various forms of nonlinear oscillators. The equation of motion of the nonlinear oscillator is transformed into a first-order decay term plus an energy term, where this transformed equation can be decoupled into a set of two analytically solvable equations. The decoupled equations can be solved for the decay formulas. Unlike other methods in the literature, this transformation method is directly applied to the equation of motion, and an approximate solution is not required to be known a priori. The method is first applied to a purely nonlinear oscillator with a non-negative, real-power restoring force to obtain the decay formulas. These decay formulas are found to behave similarly to those of a linear oscillator. In addition, these formulas are employed to obtain an accurate formula for the frequency decay. Based on this result, the exact frequency formula given in the literature for this oscillator is generalized by substituting the initial values of the envelopes for the actual initial conditions. By this modification, the formulas for the initial and time-varying frequencies become valid for any combination of the initial displacement and velocity. Furthermore, a generalized nonlinear oscillator for which the transformation is always valid is introduced. From this generalized oscillator, the proposed transformation is applied to analyze various types of oscillators.


2005 ◽  
Vol 05 (01) ◽  
pp. 135-142 ◽  
Author(s):  
A. PAVIC ◽  
S. ŽIVANOVIĆ ◽  
P. REYNOLDS

This study investigates the error which occurs when numerically integrating the equation of motion of a single degree of freedom system excited by a harmonic force near resonance. The Constant Average Acceleration method was considered in particular as it features in many finite element software packages. It was found that a considerable error in the calculated responses occurs in systems with low damping due to the well known phenomenon of period elongation. However, the error is reduced for systems with higher damping and/or when smaller time step is used. With regard to this, recommendations are given as to the time steps required to obtain solutions with a pre-defined level of accuracy.


Sign in / Sign up

Export Citation Format

Share Document