The mixing layer of turbulent flows in homogeneous nonconducting and conducting fluids

1973 ◽  
Vol 6 (1) ◽  
pp. 41-53
Author(s):  
V. G. Lushchik ◽  
S. A. Regirer



2015 ◽  
Vol 766 ◽  
pp. 337-367 ◽  
Author(s):  
Bartosz Protas ◽  
Bernd R. Noack ◽  
Jan Östh

AbstractWe propose a variational approach to the identification of an optimal nonlinear eddy viscosity as a subscale turbulence representation for proper orthogonal decomposition (POD) models. The ansatz for the eddy viscosity is given in terms of an arbitrary function of the resolved fluctuation energy. This function is found as a minimizer of a cost functional measuring the difference between the target data coming from a resolved direct or large-eddy simulation of the flow and its reconstruction based on the POD model. The optimization is performed with a data-assimilation approach generalizing the 4D-VAR method. POD models with optimal eddy viscosities are presented for a 2D incompressible mixing layer at $\mathit{Re}=500$ (based on the initial vorticity thickness and the velocity of the high-speed stream) and a 3D Ahmed body wake at $\mathit{Re}=300\,000$ (based on the body height and the free-stream velocity). The variational optimization formulation elucidates a number of interesting physical insights concerning the eddy-viscosity ansatz used. The 20-dimensional model of the mixing-layer reveals a negative eddy-viscosity regime at low fluctuation levels which improves the transient times towards the attractor. The 100-dimensional wake model yields more accurate energy distributions as compared to the nonlinear modal eddy-viscosity benchmark proposed recently by Östh et al. (J. Fluid Mech., vol. 747, 2014, pp. 518–544). Our methodology can be applied to construct quite arbitrary closure relations and, more generally, constitutive relations optimizing statistical properties of a broad class of reduced-order models.



2012 ◽  
Vol 700 ◽  
pp. 514-542 ◽  
Author(s):  
Orestis Malaspinas ◽  
Pierre Sagaut

AbstractThe lattice Boltzmann method has become a widely used tool for the numerical simulation of fluid flows and in particular of turbulent flows. In this frame the inclusion of subgrid scale closures is of crucial importance and is not completely understood from the theoretical point of view. Here, we propose a consistent way of introducing subgrid closures in the BGK Boltzmann equation for large eddy simulations of turbulent flows. Based on the Hermite expansion of the velocity distribution function, we construct a hierarchy of subgrid scale terms, which are similar to those obtained for the Navier–Stokes equations, and discuss their inclusion in the lattice Boltzmann method scheme. A link between our approach and the standard way on including eddy viscosity models in the lattice Boltzmann method is established. It is shown that the use of a single modified scalar relaxation time to account for subgrid viscosity effects is not consistent in the compressible case. Finally, we validate the approach in the weakly compressible case by simulating the time developing mixing layer and comparing with experimental results and direct numerical simulations.



2013 ◽  
Vol 8 (3) ◽  
pp. 407-422 ◽  
Author(s):  
Masashi ICHIMIYA ◽  
Ikuo NAKAMURA


1997 ◽  
Vol 348 ◽  
pp. 177-199 ◽  
Author(s):  
R. CAMUSSI ◽  
G. GUJ

Experimental data obtained in various turbulent flows are analysed by means of orthogonal wavelet transforms. Several configurations are analysed: homogeneous grid turbulence at low and very low Reλ, and fully developed jet turbulence at moderate and high Reλ. It is shown by means of the wavelet decomposition in combination with the form of scaling named extended self-similarity that some statistical properties of fully developed turbulence may be extended to low-Reλ flows. Indeed, universal properties related to intermittency are observed down to Reλ≃10. Furthermore, the use of a new conditional averaging technique of velocity signals, based on the wavelet transform, permits the identification of the time signatures of coherent structures which may or may not be responsible for intermittency depending on the scale of the structure itself. It is shown that in grid turbulence, intermittency at the smallest scales is related to structures with small characteristic size and with a shape that may be related to the passage of vortex tubes. In jet turbulence, the longitudinal velocity component reveals that intermittency may be induced by structures with a size of the order of the integral length. This effect is interpreted as the signature of the characteristic jet mixing layer structures. The structures identified on the transverse velocity component of the jet case turn out on the other hand not to be affected by the mixing layer and the corresponding shape is again correlated with the signature of vortex tubes.



1993 ◽  
Vol 246 ◽  
pp. 489-502 ◽  
Author(s):  
George Kosály

Bilger, Saetran & Krishnamoorthy (1991) give measured values of the variance, cross-correlation coefficient, autospectra, coherence and phase shift of the reactant concentration fluctuations for an irreversible second-order reaction in an incompressible turbulent scalar mixing layer. The present paper approaches the interpretation of the measured data by evaluating the above quantities in the frozen (slow) and equilibrium (fast) chemistry limits. We assume that the limiting values bracket the corresponding intermediate rate data.The analysis leads to values that correspond with the measured variances and correlation coefficients. The paper offers simple procedures for experimenters to evaluate the fast chemistry limit of the spectral characteristics from the measured mixture fraction fluctuations. The investigation of the limiting spectra suggests that, in the frequency region considered in the Bilger et al. measurements, the shape of the autospectrum is quite insensitive to the chemistry rate. The cross-spectrum is much more sensitive to the chemistry than the autospectrum. The analysis predicts correctly that the coherence decreases with increasing frequency while the phase stays equal to π until the decrease of the coherence leads to indeterminate phase results.



2021 ◽  
pp. 1-25
Author(s):  
Reza Sheikhi ◽  
Fatemeh Hadi

Abstract The scalar filtered density function (FDF) methodology is extended and employed for large eddy simulation (LES) of turbulent flows under supercritical condition. To describe real-fluid behavior, the extended methodology incorporates the generalized heat and mass diffusion models along with real fluid thermodynamic relations which are derived using the cubic Peng-Robinson equation of state. These models are implemented within the stochastic differential equations comprising the scalar FDF transport. Simulations are conducted of a temporally developing mixing layer under supercritical condition and the results are assessed by comparing with data generated by direct numerical simulation (DNS) of the same layer. The consistency of the proposed FDF methodology is assessed. The LES-FDF predictions are shown to agree favorably with the DNS data and exhibit several key features pertaining to supercritical turbulent flows.



1993 ◽  
Vol 247 ◽  
pp. 275-320 ◽  
Author(s):  
Robert D. Moser ◽  
Michael M. Rogers

The evolution of three-dimensional temporally evolving plane mixing layers through as many as three pairings has been simulated numerically. All simulations were begun from a few low-wavenumber disturbances, usually derived from linear stability theory, in addition to the mean velocity. Three-dimensional perturbations were used with amplitudes ranging from infinitesimal to large enough to trigger a rapid transition to turbulence. Pairing is found to inhibit the growth of infinitesimal three-dimensional disturbances, and to trigger the transition to turbulence in highly three-dimensional flows. The mechanisms responsible for the growth of three-dimensionality and onset of transition to turbulence are described. The transition to turbulence is accompanied by the formation of thin sheets of spanwise vorticity, which undergo secondary rollups. The post-transitional simulated flow fields exhibit many properties characteristic of turbulent flows.





Sign in / Sign up

Export Citation Format

Share Document