The impact of historic land use and modern forestry on nutrient relations of Central European forest ecosystems

1991 ◽  
Vol 27 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Gerhard Glatzel

2019 ◽  
Vol 34 (12) ◽  
pp. 2837-2850 ◽  
Author(s):  
Cornelius Senf ◽  
Jörg Müller ◽  
Rupert Seidl

Abstract Context Recovery from disturbances is a prominent measure of forest ecosystem resilience, with swift recovery indicating resilient systems. The forest ecosystems of Central Europe have recently been affected by unprecedented levels of natural disturbance, yet our understanding of their ability to recover from disturbances is still limited. Objectives We here integrated satellite and airborne Lidar data to (i) quantify multi-decadal post-disturbance recovery of two indicators of forest structure, and (ii) compare the recovery trajectories of forest structure among managed and un-managed forests. Methods We developed satellite-based models predicting Lidar-derived estimates of tree cover and stand height at 30 m grain across a 3100 km2 landscape in the Bohemian Forest Ecosystem (Central Europe). We summarized the percentage of disturbed area that recovered to > 40% tree cover and > 5 m stand height and quantified the variability in both indicators over a 30-year period. The analyses were stratified by three management regimes (managed, protected, strictly protected) and two forest types (beech-dominated, spruce-dominated). Results We found that on average 84% of the disturbed area met our recovery threshold 30 years post-disturbance. The rate of recovery was slower in un-managed compared to managed forests. Variability in tree cover was more persistent over time in un-managed forests, while managed forests strongly converged after a few decades post-disturbance. Conclusion We conclude that current management facilitates the recovery of forest structure in Central European forest ecosystems. However, our results underline that forests recovered well from disturbances also in the absence of human intervention. Our analysis highlights the high resilience of Central European forest ecosystems to recent disturbances.



2003 ◽  
Vol 166 (2) ◽  
pp. 168-174 ◽  
Author(s):  
Jens-Johann Langusch ◽  
Werner Borken ◽  
Martin Armbruster ◽  
Nancy B. Dise ◽  
Egbert Matzner


2002 ◽  
Vol 37 (1) ◽  
pp. 17-32 ◽  
Author(s):  
Anton Fischer ◽  
Marcus Lindner ◽  
Clemens Abs ◽  
Petra Lasch




2020 ◽  
Vol 375 (1810) ◽  
pp. 20190527 ◽  
Author(s):  
Louis Gourlez de la Motte ◽  
Quentin Beauclaire ◽  
Bernard Heinesch ◽  
Mathias Cuntz ◽  
Lenka Foltýnová ◽  
...  

Severe drought events are known to cause important reductions of gross primary productivity ( GPP ) in forest ecosystems. However, it is still unclear whether this reduction originates from stomatal closure (Stomatal Origin Limitation) and/or non-stomatal limitations (Non-SOL). In this study, we investigated the impact of edaphic drought in 2018 on GPP and its origin (SOL, NSOL) using a dataset of 10 European forest ecosystem flux towers. In all stations where GPP reductions were observed during the drought, these were largely explained by declines in the maximum apparent canopy scale carboxylation rate V CMAX,APP (NSOL) when the soil relative extractable water content dropped below around 0.4. Concurrently, we found that the stomatal slope parameter ( G 1 , related to SOL) of the Medlyn et al . unified optimization model linking vegetation conductance and GPP remained relatively constant. These results strengthen the increasing evidence that NSOL should be included in stomatal conductance/photosynthesis models to faithfully simulate both GPP and water fluxes in forest ecosystems during severe drought. This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale’.



Sign in / Sign up

Export Citation Format

Share Document