dry and wet deposition
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 1)

H-INDEX

20
(FIVE YEARS 0)

Author(s):  
Ljiljana Gulan ◽  
Tatjana Jakšić ◽  
Biljana Milenković ◽  
Jelena Stajić

This paper deals with investigations of elemental concentrations and soil-to-moss transfer factors of radionuclides in area of municipalities Kosovska Mitrovica and Zubin Potok. Twelve samples of soil and moss Hypnum cupressiforme Hedw. were collected during May 2018. Transfer factors of radionuclides: 226Ra, 232Th, 40Kand 137Cs were calculated with regard to elemental concentrations of radionuclides in soil and moss samples. Analysis was done in order to indicate the different ways of adopting radionuclides by mosses. According to calculated transfer factors and analysis, authors concluded that the soil is dominant source of natural radionuclides and their concentration in moss occurred due to resuspension of soil particles, while artificial 137Cs is present in soil and moss samples as a consequence of atmospheric dry and wet deposition.



2020 ◽  
Vol 20 (5) ◽  
pp. 2667-2693 ◽  
Author(s):  
Syuichi Itahashi ◽  
Baozhu Ge ◽  
Keiichi Sato ◽  
Joshua S. Fu ◽  
Xuemei Wang ◽  
...  

Abstract. The Model Inter-Comparison Study for Asia (MICS-Asia) phase III was conducted to promote understanding of regional air quality and climate change in Asia, which have received growing attention due to the huge amount of anthropogenic emissions worldwide. This study provides an overview of acid deposition. Specifically, dry and wet deposition of the following species was analyzed: S (sulfate aerosol, sulfur dioxide (SO2), and sulfuric acid (H2SO4)), N (nitrate aerosol, nitrogen monoxide (NO), nitrogen dioxide (NO2), and nitric acid (HNO3)), and A (ammonium aerosol and ammonia (NH3)). The wet deposition simulated by a total of nine models was analyzed and evaluated using ground observation data from the Acid Deposition Monitoring Network in East Asia (EANET). In the phase III study, the number of observation sites was increased from 37 in the phase II study to 54, and southeast Asian countries were newly added. Additionally, whereas the analysis period was limited to representative months of each season in MICS-Asia phase II, the phase III study analyzed the full year of 2010. The scope of this overview mainly focuses on the annual accumulated deposition. In general, models can capture the observed wet deposition over Asia but underestimate the wet deposition of S and A, and show large differences in the wet deposition of N. Furthermore, the ratio of wet deposition to the total deposition (the sum of dry and wet deposition) was investigated in order to understand the role of important processes in the total deposition. The general dominance of wet deposition over Asia and attributions from dry deposition over land were consistently found in all models. Then, total deposition maps over 13 countries participating in EANET were produced, and the balance between deposition and anthropogenic emissions was calculated. Excesses of deposition, rather than of anthropogenic emissions, were found over Japan, northern Asia, and southeast Asia, indicating the possibility of long-range transport within and outside of Asia, as well as other emission sources. To improve the ability of models to capture the observed wet deposition, two approaches were attempted, namely, ensemble and precipitation adjustment. The ensemble approach was effective at modulating the differences in performance among models, and the precipitation-adjusted approach demonstrated that the model performance for precipitation played a key role in better simulating wet deposition. Finally, the lessons learned from the phase III study and future perspectives for phase IV are summarized.



2020 ◽  
Vol 10 (2) ◽  
pp. 59-64
Author(s):  
Ljiljana Gulan ◽  
Tatjana Jakšić ◽  
Biljana Milenković ◽  
Jelena Stajić

This paper deals with investigations of elemental concentrations and soil-to-moss transfer factors of radionuclides in area of municipalities Kosovska Mitrovica and Zubin Potok. Twelve samples of soil and moss Hypnum cupressiforme Hedw. were collected during May 2018. Transfer factors of radionuclides: 226Ra, 232Th, 40K and 137Cs were calculated with regard to elemental concentrations of radionuclides in soil and moss samples. Analysis was done in order to indicate the different ways of adopting radionuclides by mosses. According to calculated transfer factors and analysis, authors concluded that the soil is dominant source of natural radionuclides and their concentration in moss occurred due to resuspension of soil particles, while artificial 137Cs is present in soil and moss samples as a consequence of atmospheric dry and wet deposition.



2019 ◽  
Vol 218 ◽  
pp. 117022 ◽  
Author(s):  
Kiyoshi Matsumoto ◽  
Keisuke Sakata ◽  
Yuuya Watanabe


2019 ◽  
Vol 19 (18) ◽  
pp. 11969-11983
Author(s):  
Ke Dong ◽  
Cheolwoon Woo ◽  
Naomichi Yamamoto

Abstract. Plants disperse spores, pollen, and fragments into the atmosphere. The emitted plant particles return to the pedosphere by sedimentation (dry deposition) and/or by precipitation (wet deposition) and constitute part of the global cycle of substances. However, little is known regarding the taxonomic diversities and flux densities of plant particles deposited from the atmosphere. Here, plant assemblages were examined in atmospheric deposits collected in Seoul in South Korea. A custom-made automatic sampler was used to collect dry and wet deposition samples for which plant assemblages and quantities were determined using high-throughput sequencing and quantitative polymerase chain reaction (PCR) with universal plant-specific primers targeting the internal transcribed spacer 2 (ITS2) region. Dry deposition was dominant for atmospheric deposition of plant particles (87 %). The remaining 13 % was deposited by precipitation, i.e., wet deposition, via rainout (in-cloud scavenging) and/or washout (below-cloud scavenging). Plant assemblage structures did not differ significantly between dry and wet deposition, indicating a possibility that washout, which is possibly taxon-independent, predominated rainout, which is possibly taxon-dependent, for wet deposition of atmospheric plant particles. A small number of plant genera were detected only in wet deposition, indicating that they might be specifically involved in precipitation through acting as nucleation sites in the atmosphere. Future interannual monitoring will control for the seasonality of atmospheric plant assemblages observed at our sampling site. Future global monitoring is also proposed to investigate geographical differences and investigate whether endemic species are involved in plant-mediated bioprecipitation in regional ecological systems.



2019 ◽  
Author(s):  
Ke Dong ◽  
Cheolwoon Woo ◽  
Naomichi Yamamoto

Abstract. Plants disperse spores, pollen, and fragments into the atmosphere. The emitted plant particles return to the pedosphere by sedimentation (dry deposition) and/or by precipitation (wet deposition) and constitute part of the global cycle of substances. However, little is known regarding the taxonomic diversities and flux densities of plant particles deposited from the atmosphere. Here, plant assemblages were examined in atmospheric deposits collected in Seoul in South Korea. A custom-made automatic sampler was used to collect dry and wet deposition samples for which plant assemblages and quantities were determined using high-throughput sequencing and quantitative PCR with universal plant-specific primers targeting the internal transcribed spacer 2 (ITS2) region. Dry deposition was dominant for atmospheric deposition of plant particles (87 %). The remaining 13 % was deposited by precipitation, i.e., wet deposition, via rainout (in-cloud scavenging) and/or washout (below-cloud scavenging). Plant assemblage structures did not differ significantly between dry and wet deposition, indicating that washout, which is likely taxon-independent, predominated rainout, which is likely taxon-dependent, for wet deposition of atmospheric plant particles. A small number of plant genera were detected only in wet deposition, indicating that they might be specifically involved in precipitation through acting as nucleation sites in the atmosphere. Future interannual monitoring will control for the seasonality of atmospheric plant assemblages observed at our sampling site. Future global monitoring is also proposed to investigate geographical differences and investigate whether endemic species are involved in plant-mediated bioprecipitation in regional ecological systems.



Author(s):  
Jun Qin ◽  
Yassin Mbululo ◽  
Muyi Yang ◽  
Zhengxuan Yuan ◽  
Fatuma Nyihirani ◽  
...  

Measurement of PM2.5 concentration, dry and wet deposition of water-soluble inorganic ions (WSII) and their deposition flux was carried out. During sampling, a total number of 31 samples of PM2.5, five wet deposition samples and seven dry deposition samples were collected. The analyses results showed that the average concentration of PM2.5 was 122.95 µg/m3 whilst that of WSII was 51.63 µg/m3, equivalent to 42% of the total mass of PM2.5. The correlation coefficients between WSII in samples of PM2.5 was significant (r = 0.50 and p-value of 0.0019). Ions of   SO 4 2 − , NO 3 − , Cl − , and   NH 4 + were dominant in the entire samples (PM2.5, dry and wet depositions), nevertheless, the average concentration of both SO 4 2 − and Cl − were below the China environmental quality standard for surface water. The ratio of dominant anions in wet deposition ( SO 4 2 − / NO 3 − ) was 1.59, whilst that for dry deposition ( SO 4 2 − / Cl − ) was 1.4, indicating that acidity was mainly derived from sulphate. In the case of dominant cations, the dry and wet deposition ratios ( Ca 2 + / NH 4 + ) were 1.36 and 1.37, respectively, suggesting the alkaline substances were mainly dominated by calcium salts. Days with higher recorded concentrations of PM2.5 were accompanied by dry and warm boundary layer structure, weak low-level wind and strong inversion layer.



2018 ◽  
Vol 123 (21) ◽  
pp. 12,277-12,290 ◽  
Author(s):  
Ethan W. Emerson ◽  
Joseph M. Katich ◽  
Joshua P. Schwarz ◽  
Gavin R. McMeeking ◽  
Delphine K. Farmer


PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0199241 ◽  
Author(s):  
Yanan Wu ◽  
Jiakai Liu ◽  
Jiexiu Zhai ◽  
Ling Cong ◽  
Yu Wang ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document