ecosystem flux
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Saqr Munassar ◽  
Christian Rödenbeck ◽  
Thomas Koch ◽  
Kai U. Totsche ◽  
Michał Gałkowski ◽  
...  

Abstract. 3-hourly Net Ecosystem Exchange (NEE) is estimated at spatial scales of 0.25 degrees over the European continent, based on the pre-operational inverse modelling framework CarboScope Regional (CSR) for the years 2006 to 2019. To assess the uncertainty originating from the choice of a-priori flux models and observational data, ensembles of inversions were produced using three terrestrial ecosystem flux models, two ocean flux models, and three sets of atmospheric stations. We find that the station set ensemble accounts for 61 % of the total spread of the annually aggregated fluxes over the full domain when varying all these elements, while the biosphere and ocean ensembles resulted in much smaller contributions to the spread of 28 % and 11 %, respectively. These percentages differ over the specific regions of Europe, based on the availability of atmospheric data. For example, the spread of the biosphere ensemble is prone to be larger in regions that are less constrained by CO2 measurements. We further investigate the unprecedented increase of temperature and simultaneous reduction of Soil Water Content (SWC) observed in 2018 and 2019. We find that NEE estimates during these two years suggest an impact of drought occurrences represented by the reduction of Net Primary Productivity (NPP), which in turn lead to less CO2 uptake across Europe in 2018 and 2019, resulting in anomalies up to 0.13 and 0.07 PgC yr-1 above the climatological mean, respectively. Annual temperature anomalies also exceeded the climatological mean by 0.46 °C in 2018 and by 0.56 °C in 2019, while standardized-precipitation-evaporation-index (SPEI) anomalies declined to −0.20 and −0.05 SPEI units below the climatological mean in both 2018 and 2019, respectively. Therefore, the biogenic fluxes showed a weaker sink of CO2 in both 2018 and 2019 (−0.22±0.05 and −0.28±0.06 PgC yr-1, respectively) in comparison with the mean −0.36±0.07 PgC yr-1 calculated over the full analysed period (i.e., fourteen years). These translate into a continental-wide reduction of the annual sink by 39 % and 22 %, respectively, larger than the typical year-to-year standard deviation of 19 % observed over the full period.


Nitrogen ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 167-189
Author(s):  
Daniel M. Alongi

Nitrogen (N) cycling in mangroves is complex, with rapid turnover of low dissolved N concentrations, but slow turnover of particulate N. Most N is stored in soils. The largest sources of N are nearly equal amounts of mangrove and benthic microalgal primary production. Dissolved N fluxes between the forests and tidal waters show net uptake, indicating N conservation. N2-fixation is underestimated as rapid rates measured on tree stems, aboveground roots and cyanobacterial mats cannot currently be accounted for at the whole-forest scale due to their extreme patchiness and the inability to extrapolate beyond a localized area. Net immobilization of NH4+ is the largest ecosystem flux, indicating N retention. Denitrification is the largest loss of N, equating to 35% of total N input. Burial equates to about 29% of total inputs and is the second largest loss of N. Total inputs slightly exceed total outputs, currently suggesting net N balance in mangroves. Mangrove PON export equates to ≈95% of PON export from the world’s tropical rivers, but only 1.5% of the entire world’s river discharge. Mangrove N2O emissions, denitrification, and burial contribute 0.4%, 0.5–2.0% and 6%, respectively, to the global coastal ocean, which are disproportionate to their small worldwide area.


2020 ◽  
Vol 375 (1810) ◽  
pp. 20190527 ◽  
Author(s):  
Louis Gourlez de la Motte ◽  
Quentin Beauclaire ◽  
Bernard Heinesch ◽  
Mathias Cuntz ◽  
Lenka Foltýnová ◽  
...  

Severe drought events are known to cause important reductions of gross primary productivity ( GPP ) in forest ecosystems. However, it is still unclear whether this reduction originates from stomatal closure (Stomatal Origin Limitation) and/or non-stomatal limitations (Non-SOL). In this study, we investigated the impact of edaphic drought in 2018 on GPP and its origin (SOL, NSOL) using a dataset of 10 European forest ecosystem flux towers. In all stations where GPP reductions were observed during the drought, these were largely explained by declines in the maximum apparent canopy scale carboxylation rate V CMAX,APP (NSOL) when the soil relative extractable water content dropped below around 0.4. Concurrently, we found that the stomatal slope parameter ( G 1 , related to SOL) of the Medlyn et al . unified optimization model linking vegetation conductance and GPP remained relatively constant. These results strengthen the increasing evidence that NSOL should be included in stomatal conductance/photosynthesis models to faithfully simulate both GPP and water fluxes in forest ecosystems during severe drought. This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale’.


2020 ◽  
Vol 375 (1810) ◽  
pp. 20190513 ◽  
Author(s):  
M. Ramonet ◽  
P. Ciais ◽  
F. Apadula ◽  
J. Bartyzel ◽  
A. Bastos ◽  
...  

During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO 2 ) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO 2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO 2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO 2 cycles from 48 European stations were available for 2017 and 2018. Earlier data were retrieved for comparison from international databases or national networks. Here, we show that the usual summer minimum in CO 2 due to the surface carbon uptake was reduced by 1.4 ppm in 2018 for the 10 stations located in the area most affected by the temperature anomaly, mostly in Northern Europe. Notwithstanding, the CO 2 transition phases before and after July were slower in 2018 compared to 2017, suggesting an extension of the growing season, with either continued CO 2 uptake by photosynthesis and/or a reduction in respiration driven by the depletion of substrate for respiration inherited from the previous months due to the drought. For stations with sufficiently long time series, the CO 2 anomaly observed in 2018 was compared to previous European droughts in 2003 and 2015. Considering the areas most affected by the temperature anomalies, we found a higher CO 2 anomaly in 2003 (+3 ppm averaged over 4 sites), and a smaller anomaly in 2015 (+1 ppm averaged over 11 sites) compared to 2018. This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


2020 ◽  
Author(s):  
Linjie Jiao ◽  
Yuichi Sempuku ◽  
Ting-wei Chang ◽  
Yoshiko Kosugi

<p>Interception is an important hydrological process relating to canopy gas exchange and takes a significant part from precipitation. The real interception process by the needle leaves is worth discussing because their shape may allow interception by both surfaces and thus affects photosynthesis by blocking stomata. Therefore, the aim of this study is to figure out the distribution of interception at needle leaf and its relation with the gas exchange of wet canopy.</p><p>We measured ecosystem flux and wetness from a Japanese cypress forest by the advanced water-proof enclosed gas analyzer (LI7200, LI-COR, the USA) and handmade wetness sensors. A SVAT (soil-vegetation-atmosphere transfer) multilayer model with two rainfall interception solutions (free gas exchange with interception only by the adaxial surface and no gas exchange with interception by both surfaces) has been used to figure out the distribution of rainfall interception, snow melting water distribution and photosynthesis process of wet canopy.</p><p>The results include precipitation events from 4 years, showing that interception can happen not only on the adaxial surface but also on both surfaces. Meanwhile, when the intensity of rainfall events enhanced, the possibility of interception on both surfaces increased. Hence, such kind of needle leaf can process photosynthesis during the rainfall. Future studies should concentrate on improving the model for snow process and soil respiration. More comparison with other types of forests may also provide worthy results for learning how plants adjust photosynthesis to adapt the climate change.</p>


2020 ◽  
Vol 26 (5) ◽  
pp. 2923-2943 ◽  
Author(s):  
Xianglin Tian ◽  
Francesco Minunno ◽  
Tianjian Cao ◽  
Mikko Peltoniemi ◽  
Tuomo Kalliokoski ◽  
...  

2019 ◽  
Author(s):  
Nicholas P. Rosenstock ◽  
Johan Stendahl ◽  
Gregory van der Heijden ◽  
Lars Lundin ◽  
Eric McGivney ◽  
...  

Abstract. The soil exchangeable pool is classically viewed as the bank of base cations in the soil, withdrawn from by plant uptake and leaching and deposited into by decomposition, deposition and mineral weathering. While largely true, this view ignores the potential large size of other soil nutrient pools, including microbial biomass, clay interlayer absorbed elements, and calcium oxalate. These pools can be sizeable and neglecting them in studies examining the sustainability of biomass extractions or need for nutient return limits our ability to gauge the threat or risk of unusustainable biomass removals. In this short communication, we examine a set of chemical extraction data from a mature Norway Spruce forest in central Sweden, and compare this dataset to ecosystem flux data gathered from the site in other research. We bound the sizes of these pools and discuss them in the perspective of a forest rotation period. Lastly, we highlight the potential for sequential extraction techniques and isotope exchange measurments to illuminate the identify and flux rates of these important, and commonly overlooked, nutrient pools.


2017 ◽  
Author(s):  
Zhiyuan Zhang ◽  
Renduo Zhang ◽  
Yang Zhou ◽  
Alessandro Cescatti ◽  
Georg Wohlfahrt ◽  
...  

Abstract. Terrestrial ecosystem respiration (Re) is the major source of CO2 release and constitutes the second largest carbon flux between the biosphere and atmosphere. Therefore, climate-driven changes of Re may greatly impact on future atmospheric CO2 concentration. The aim of this study was to derive an air temperature threshold for identifying the driving climate forces of the respiratory process in terrestrial ecosystems within different temperature zones. For this purpose, a global dataset of 647 site-years of ecosystem flux data collected at 152 sites has been examined. Our analysis revealed an ecosystem threshold of mean annual air temperature (MAT) of 11 ± 2.3 °C. In ecosystems with the MAT below this threshold, the maximum Re rates were primarily dependent on temperature and respiration was mainly a temperature-driven process. On the contrary, in ecosystems with the MAT greater than 11 ± 2.3 °C, in addition to temperature, other driving forces, such as water availability and surface heat flux, became significant drivers of the maximum Re rates and respiration was a multi-factor-driven process. The information derived from this study highlight the key role of temperature as main controlling factor of the maximum Re rates on a large fraction of the terrestrial biosphere, while other driving forces reduce the maximum Re rates and temperature sensitivity of the respiratory process. These findings are particularly relevant under the current scenario of rapid global warming, given that the potential climate-induced changes in ecosystem respiration may lead to substantial anomalies in the seasonality and magnitude of the terrestrial carbon budget.


Sign in / Sign up

Export Citation Format

Share Document