Numerical modeling of three-dimensional viscous flows using a space-marching method with pressure iterations

1993 ◽  
Vol 27 (5) ◽  
pp. 707-719 ◽  
Author(s):  
A. A. Markov
1985 ◽  
Vol 22 (4) ◽  
pp. 311-317 ◽  
Author(s):  
K. N. S. Murthy ◽  
B. Lakshminarayana

2011 ◽  
Vol 42 (4) ◽  
pp. 445-465
Author(s):  
Anatoliy Pavlovich Mazurov

Author(s):  
Lianjie Li ◽  
Jianxin Li ◽  
Haibo Xie ◽  
Hongqiang Liu ◽  
Li Sun ◽  
...  

Energy ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 488-497 ◽  
Author(s):  
Xiao-Dong Wang ◽  
Yu-Xian Huang ◽  
Chin-Hsiang Cheng ◽  
David Ta-Wei Lin ◽  
Chung-Hao Kang

1995 ◽  
Vol 9 (6) ◽  
pp. 671-695 ◽  
Author(s):  
D. Mateescu ◽  
T. Pottier ◽  
L. Perotin ◽  
S. Granger

2015 ◽  
Vol 33 (11) ◽  
pp. 1350-1359 ◽  
Author(s):  
Jonathan H. Perez ◽  
Fumina Tanaka ◽  
Fumihiko Tanaka ◽  
Daisuke Hamanaka ◽  
Toshitaka Uchino

1977 ◽  
Vol 99 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Jean-Pierre Veuillot

The equations of the through flow are obtained by an asymptotic theory valid when the blade pitch is small. An iterative method determines the meridian stream function, the circulation, and the density. The various equations are discretized in an orthogonal mesh and solved by classical finite difference techniques. The calculation of the steady transonic blade-to-blade flow is achieved by a time marching method using the MacCormack scheme. The space discretization is obtained either by a finite difference approach or by a finite volume approach. Numerical applications are presented.


Sign in / Sign up

Export Citation Format

Share Document