Pharmacokinetic model equations for the one- and two-compartment models with first-order processes in which the absorption and exponential elimination or distribution rate constants are equal

1988 ◽  
Vol 16 (1) ◽  
pp. 109-128 ◽  
Author(s):  
Herman P. Wijnand
1959 ◽  
Vol 32 (1) ◽  
pp. 128-138 ◽  
Author(s):  
Walter Scheele ◽  
Horst-Eckart Toussaint

Abstract The vulcanization of Perbunan 2818 by tetramethylthiuram monsulfide plus sulfur (1 mole monosulfide per gram-atom S) was thoroughly studied. The following results were shown: The limiting value for dithiocarbamate formation is 66 mole per cent of the initial thiuram monosulfide, indicating a two-thirds transformation. The limiting value is practically independent of temperature. The formation of dithiocarbamate can be described as a reaction of the first order. The formation of dithiocarbamate is characterized by an induction period which grows longer with lowering of the temperature, and at 100° C it amounts to about 100 minutes. The rate constants for dithiocarbamate formation were calculated, and it was shown that they were practically the same as those for the vulcanization of Perbunan with tetramethylthiuram disulfide. The activation energies as derived from the temperature dependence of the rate constants for dithiocarbamate formation in the vulcanization of Perbunan by thiuram monosulfide plus sulfur on the one hand and with thiuram disulfide on the other, are only very slightly different and are practically the same as the activation energy for dithiocarbamate formation during the vulcanization of natural rubber with thiuram monosulfide plus sulfur. The results were thoroughly discussed in light of the present conceptions of the course of thiuram vulcanizations.


2009 ◽  
Vol 44 (3) ◽  
pp. 253-262 ◽  
Author(s):  
Jes Vollertsen ◽  
Svein Ole Åstebøl ◽  
Jan Emil Coward ◽  
Tor Fageraas ◽  
Asbjørn Haaning Nielsen ◽  
...  

Abstract A wet detention pond in Norway has been monitored for 12 months. The pond receives runoff from a highway with a traffic load of 42,000 average daily traffic. Hydraulic conditions in terms of inflow, outflow, and pond water level were recorded every minute. Water quality was monitored by volume proportional inlet and outlet samples. During most of the year, excellent pollutant removal was achieved; however, during two snowmelt events the pollutant removal was poor or even negative. The two snowmelt events accounted for one third of the annual water load and for a substantial part of the annual pollutant discharge. The performance of the pond was analyzed using a dynamic model and pollutant removal was simulated by first-order kinetics. Good agreement between measurement and simulation could be achieved only when choosing different first-order rate constants for different parts of the year. However, no relation between the rate constants obtained and the time of year could be identified, and neither did the rate constants for different pollutants correlate. The study indicates that even detailed measurements of pollutant input and output allow only average performance to be simulated and are insufficient for simulating event-based variability in pond performance.


Sign in / Sign up

Export Citation Format

Share Document