Performance and Modelling of a Highway Wet Detention Pond Designed for Cold Climate

2009 ◽  
Vol 44 (3) ◽  
pp. 253-262 ◽  
Author(s):  
Jes Vollertsen ◽  
Svein Ole Åstebøl ◽  
Jan Emil Coward ◽  
Tor Fageraas ◽  
Asbjørn Haaning Nielsen ◽  
...  

Abstract A wet detention pond in Norway has been monitored for 12 months. The pond receives runoff from a highway with a traffic load of 42,000 average daily traffic. Hydraulic conditions in terms of inflow, outflow, and pond water level were recorded every minute. Water quality was monitored by volume proportional inlet and outlet samples. During most of the year, excellent pollutant removal was achieved; however, during two snowmelt events the pollutant removal was poor or even negative. The two snowmelt events accounted for one third of the annual water load and for a substantial part of the annual pollutant discharge. The performance of the pond was analyzed using a dynamic model and pollutant removal was simulated by first-order kinetics. Good agreement between measurement and simulation could be achieved only when choosing different first-order rate constants for different parts of the year. However, no relation between the rate constants obtained and the time of year could be identified, and neither did the rate constants for different pollutants correlate. The study indicates that even detailed measurements of pollutant input and output allow only average performance to be simulated and are insufficient for simulating event-based variability in pond performance.

1989 ◽  
Vol 21 (8-9) ◽  
pp. 727-738 ◽  
Author(s):  
D. E. Benelmouffok ◽  
S. L. Yu

A vertically averaged two-dimensional hydrodynamic model was developed to simulate water movements in a small shallow unstratified impoundment. The hydrodynamic model was then coupled with a two-dimensional pollutant transport model to calculate the mass fluxes of pollutant. The differential equations were numerically solved on a space staggered grid using a two-level time ADI integration scheme. The model was used to simulate the flow and pollutant transport and to assess the pollutant removal performance of an urban detention pond located in Charlottesville, VA. Results of the simulation were compared to field data taken at the site. The model was successfully utilized in simulating pollutant transport and trapping, making it useful in analyzing wet detention pond modification for urban pollution control.


2004 ◽  
Vol 130 (11) ◽  
pp. 1315-1321 ◽  
Author(s):  
Guang-Te Wang ◽  
Shulin Chen ◽  
Michael E. Barber ◽  
David R. Yonge

1994 ◽  
Vol 30 (11) ◽  
pp. 143-146
Author(s):  
Ronald D. Neufeld ◽  
Christopher A. Badali ◽  
Dennis Powers ◽  
Christopher Carson

A two step operation is proposed for the biodegradation of low concentrations (< 10 mg/L) of BETX substances in an up flow submerged biotower configuration. Step 1 involves growth of a lush biofilm using benzoic acid in a batch mode. Step 2 involves a longer term biological transformation of BETX. Kinetics of biotransformations are modeled using first order assumptions, with rate constants being a function of benzoic acid dosages used in Step 1. A calibrated computer model is developed and presented to predict the degree of transformation and biomass level throughout the tower under a variety of inlet and design operational conditions.


Author(s):  
Manoj Kumar ◽  
Rajesh Singh

In the present study area-based, pollutant removal kinetic analysis was considered using the Zero-order, first-order decay and efficiency loss (EL) models in the constructed wetlands (CWs) for municipal wastewater treatment....


1985 ◽  
Vol 40 (11) ◽  
pp. 1128-1132
Author(s):  
Y. Riad ◽  
Adel N. Asaad ◽  
G.-A. S. Gohar ◽  
A. A. Abdallah

Sodium hydroxide reacts with α -(4-nitrobenzylthio)-acetic acid in aqueous-dioxane media to give 4,4'-diformylazoxybenzene as the main product besides 4,4'-dicarboxyazoxybenzene and a nitrone acid. This reaction was kinetically studied in presence of excess of alkali in different dioxane-water media at different temperatures. It started by a fast reversible a-proton abstraction step followed by two consecutive irreversible first-order steps forming two intermediates (α -hydroxy, 4-nitrosobenzylthio)-acetic acid and 4-nitrosobenzaldehyde. The latter underwent a Cannizzaro's reaction, the products of which changed in the reaction medium into 4,4'-diformylazoxybenzene and 4,4'-dicarboxyazoxybenzene. The rate constants and the thermodynamic parameters of the two consecutive steps were calculated and discussed. A mechanism was put forward for the formation of the nitrone acid.Other six 4-nitrobenzyl, aryl sulphides were qualitatively studied and they gave mainly 4,4'-diformylazoxybenzene beside 4,4'-dicarboxyazoxybenzene or its corresponding azo acid.


1981 ◽  
Vol 27 (5) ◽  
pp. 753-755 ◽  
Author(s):  
P A Adams ◽  
M C Berman

Abstract We describe a simple, highly reproducible kinetic technique for precisely measuring temperature in spectrophotometric systems having reaction cells that are inaccessible to conventional temperature probes. The method is based on the temperature dependence of pseudo-first-order rate constants for the acid-catalyzed hydrolysis of N-o-tolyl-D-glucosylamine. Temperatures of reaction cuvette contents are measured with a precision of +/- 0.05 degrees C (1 SD).


1987 ◽  
Author(s):  
Moideen P Jamaluddin

Platelet aggregation kinetics, according to the particle collision theory, generally assumed to apply, ought to conform to a second order type of rate law. But published data on the time-course of ADP-induced single platelet recruitment into aggregates were found not to do so and to lead to abnormal second order rate constants much larger than even their theoretical upper bounds. The data were, instead, found to fit a first order type of rate law rather well with rate constants in the range of 0.04 - 0.27 s-1. These results were confirmed in our laboratory employing gelfiltered calf platelets. Thus a mechanism much more complex than hithertofore recognized, is operative. The following kinetic scheme was formulated on the basis of information gleaned from the literature.where P is the nonaggregable, discoid platelet, A the agonist, P* an aggregable platelet form with membranous protrusions, and P** another aggregable platelet form with pseudopods. Taking into account the relative magnitudes of the k*s and assuming aggregation to be driven by hydrophobic interaction between complementary surfaces of P* and P** species, a rate equation was derived for aggregation. The kinetic scheme and the rate equation could account for the apparent first order rate law and other empirical observations in the literature.


1980 ◽  
Vol 20 (06) ◽  
pp. 579-590 ◽  
Author(s):  
Nicholas D. Sylvester ◽  
John J. Byeseda

Abstract The separation of oil, stabilized with an oil-soluble petroleum sulfonate, from brine solutions by induced-air flotation was studied in a continuous-flow pilot unit. The effects of inlet oil concentration, vessel residence time, air flow rate, bubble diameter, oil drop diameter, temperature, NaCl concentration, and cationic polyelectrolyte concentration were investigated. Oil drop and air bubble diameters, liquid residence time, and concentration of cationic polyelectrolyte were the most significant variables affecting overall flotation performance. Only drops larger than 2 m showed significant removal, while smaller drops were generated by the air-inducing rotor. The cationic polyelectrolyte improved flotation performance by increasing the number of large oil drops.The removal rate for each oil drop size was first order with respect to oil drop concentration, and an experimental procedure permitting determination of the first-order rate constants for removal only due to bubble/drop interactions was developed. The oil drop and air bubble diameters were the only variables which affected these rate constants. Increasing oil drop diameter and decreasing bubble diameter increased the rate constants. Comparison of the experimental and theoretically predicted rate constants showed that the mechanism of oil-droplet removal by bubbles from 0.2- to 0.7-mm is one of hydrodynamic capture in the wake behind the rising bubbles. Introduction Oily wastewaters are generated during the production, processing, transportation, storage, and use of petroleum and its products. Removal of dispersed oil from water is usually accomplished by either dissolved- or dispersed-gas flotation. The processes are similar: gas bubbles are introduced into the oil-containing liquid and the oil drops are captured by the gas bubbles which quickly rise to the surface where the oil is removed. The significant differences between the two flotation processes are the bubble size and mixing conditions. In dissolved-gas flotation, the bubbles are about 50 to 60 m in diameter, whereas induced-gas bubbles are an order of magnitude larger. Dissolved-gas flotation units operate under fairly quiescent conditions and the liquid phase approximates plug flow. For induced-gas flotation, the submerged rotor imparts enough energy to the liquid that the tank contents are mixed nearly perfectly.This research focuses on the induced-air flotation process for the removal of dispersed oil droplets. The industrial use of induced-air flotation devices for oil wastewater separation began in 1969. Basset provides the process development history, equipment description, and operating experience for an induced-air unit similar to the design used in the experiments described here. Although induced-air flotation equipment is simple, the fluid mechanics of the process are not; and the arrangement of the turbine, sleeve, and perforations have been determined necessarily by trail-and-error experimentation with small-scale units.The interaction between gas bubbles and oil drops has been described as follows (1) absorption of an oil drop to a gas bubble due to precipitation of a bubble on the oil surface and collision between the drop and bubble; (2) entrapment of a gas bubble in a flocculated structure of oil drops as it rises; and (3) absorption of bubbles into a flocculated structure as it forms.For dissolved-gas flotation, all these mechanisms probably influence oil removal interdependently. SPEJ P. 579^


Sign in / Sign up

Export Citation Format

Share Document