Effect of product inhibition on kinetics of drug elimination

1973 ◽  
Vol 1 (3) ◽  
pp. 231-242 ◽  
Author(s):  
Donald Perrier ◽  
John J. Ashley ◽  
Gerhard Levy
1982 ◽  
Vol 205 (2) ◽  
pp. 381-388 ◽  
Author(s):  
Ann K. Daly ◽  
Timothy J. Mantle

The steady-state kinetics of the major form of ox kidney aldehyde reductase with d-glucuronic acid have been determined at pH7. Initial rate and product inhibition studies performed in both directions are consistent with a Di-Iso Ordered Bi Bi mechanism. The mechanism of inhibition by sodium valproate and benzoic acid is shown to involve flux through an alternative pathway.


1994 ◽  
Vol 72 (3) ◽  
pp. 800-812 ◽  
Author(s):  
Simon J. Fraser ◽  
Marc R. Roussel

The transient and steady-state behaviour of the reversible Michaelis–Menten mechanism [R] and Competitive Inhibition (CI) mechanism is studied by analysis in the phase plane. Usually, the kinetics of both mechanisms is simplified to give a modified Michaelis–Menten velocity expression; this applies to the CI mechanism with excess inhibitor and to mechanism [R] in the product inhibition limit. In this paper, [R] is treated exactly as a plane autonomous system of differential equations and its true (dynamical) steady state is described by a line-like slow manifold M. Initial velocity experiments for [R] no longer strictly correspond to the hyperbolic law (as in the irreversible Michaelis–Menten mechanism) and this leads to corrections to the standard integrated rate law. Using a new analysis, the slow dynamics of the CI mechanism is reduced from a three-dimensional system to a planar system. In this mechanism transient decay collapses the trajectory flow onto a two-dimensional "slow" surface Σ; motion on Σ can be treated exactly as projected dynamics in the plane. This projected flow may differ in important ways from that of two-step mechanisms, e.g., it may lack a proper steady state. The relevance of these more accurate dynamical descriptions is discussed in relation to experimental design and metabolic function.


Author(s):  
Maximilienne Toetie Allaart ◽  
Gerben Roelandt Stouten ◽  
Diana Z. Sousa ◽  
Robbert Kleerebezem

Anaerobic microbial communities can produce carboxylic acids of medium chain length (e.g., caproate, caprylate) by elongating short chain fatty acids through reversed β-oxidation. Ethanol is a common electron donor for this process. The influence of environmental conditions on the stoichiometry and kinetics of ethanol-based chain elongation remains elusive. Here, a sequencing batch bioreactor setup with high-resolution off-gas measurements was used to identify the physiological characteristics of chain elongating microbial communities enriched on acetate and ethanol at pH 7.0 ± 0.2 and 5.5 ± 0.2. Operation at both pH-values led to the development of communities that were highly enriched (>50%, based on 16S rRNA gene amplicon sequencing) in Clostridium kluyveri related species. At both pH-values, stably performing cultures were characterized by incomplete substrate conversion and decreasing biomass-specific hydrogen production rates during an operational cycle. The process stoichiometries obtained at both pH-values were different: at pH 7.0, 71 ± 6% of the consumed electrons were converted to caproate, compared to only 30 ± 5% at pH 5.5. Operating at pH 5.5 led to a decrease in the biomass yield, but a significant increase in the biomass-specific substrate uptake rate, suggesting that the organisms employ catabolic overcapacity to deal with energy losses associated to product inhibition. These results highlight that chain elongating conversions rely on a delicate balance between substrate uptake- and product inhibition kinetics.


1993 ◽  
Vol 15 (5) ◽  
pp. 489-494 ◽  
Author(s):  
Ayaaki Ishizaki ◽  
Tomoko Ueda ◽  
Kenji Tanaka ◽  
Peter F. Stanbury

1969 ◽  
Vol 111 (3) ◽  
pp. 257-262 ◽  
Author(s):  
A. B. Graham ◽  
M. V. Park

By a study of the product-inhibition kinetics of the octanoyl-CoA synthetase from ox liver mitochondria, evidence was obtained consistent with the hypothesis that the enzyme reacts by a Bi Uni Uni Bi Ping Pong type of mechanism in which the order of addition and evolution of substrates and products is CoA, octanoate, octanoyl-CoA, ATP, PPi and AMP. There is also evidence that more than one molecule of CoA can add to the enzyme and that it may act as an allosteric activator.


Sign in / Sign up

Export Citation Format

Share Document